login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014117
Numbers n such that m^(n+1) == m (mod n) holds for all m.
43
1, 2, 6, 42, 1806
OFFSET
1,2
COMMENTS
"Somebody incorrectly remembered Fermat's little theorem as saying that the congruence a^{n+1} = a (mod n) holds for all a if n is prime" (Zagier). The sequence gives the set of integers n for which this property is in fact true.
If i == j (mod n), then m^i == m^j (mod n) for all m. The latter congruence generally holds for any (m, n)=1 with i == j (mod k), k being the order of m modulo n, i.e., the least power k for which m^k == 1 (mod n). - Lekraj Beedassy, Jul 04 2002
Also, numbers n such that n divides denominator of the n-th Bernoulli number B(n) (cf. A106741). Also, numbers n such that 1^n + 2^n + 3^n + ... + n^n == 1 (mod n). Equivalently, numbers n such that B(n)*n == 1 (mod n). Equivalently, Sum_{prime p, (p-1) divides n} n/p == -1 (mod n). It is easy to see that for n > 1, n must be an even squarefree number. Moreover, the set P of prime divisors of all such n satisfies the property: if p is in P, then p-1 is the product of distinct elements of P. This set is P = {2, 3, 7, 43}, implying that the sequence is finite and complete. - Max Alekseyev, Aug 25 2013
In 2005, B. C. Kellner proved E. W. Weisstein's conjecture that denom(B_n) = n only if n = 1806. - Jonathan Sondow, Oct 14 2013
Squarefree numbers n such that b^n == 1 (mod n^2) for every b coprime to n. Squarefree terms of A341858. - Thomas Ordowski, Aug 05 2024
LINKS
M. A. Alekseyev, J. M. Grau, and A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT], 2016-2018.
John H. Castillo and Jhony Fernando Caranguay Mainguez, The set of k-units modulo n, arXiv:1708.06812 [math.NT], 2017.
Yongyi Chen and Tae Kyu Kim, On Generalized Carmichael Numbers, arXiv:2103.04883 [math.NT], 2021.
J. Dyer-Bennet, A Theorem in Partitions of the Set of Positive Integers, Amer. Math. Monthly, 47(1940) pp. 152-4.
L. Halbeisen and N. Hungerbühler, On generalised Carmichael numbers, Hardy-Ramanujan Society, 1999, 22 (2), pp.8-22. (hal-01109575)
J. M. Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^m + 2^m + ... + m^m == n (mod m) with n|m, arXiv 1309.7941 [math.NT], 2013, Monatsh. Math., 177 (2015), 421-436.
Don Reble, A014117 and related OEIS sequences (shows there are no other terms)
Jonathan Sondow and K. MacMillan, Reducing the Erdos-Moser equation 1^n + 2^n + … + k^n = (k+1)^n modulo k and k^2, arXiv:1011.2154 [math.NT], 2010; see Prop. 2; Integers, 11 (2011), article A34.
Eric Weisstein's World of Mathematics, Bernoulli Number
FORMULA
For n <= 5, a(n) = a(n-1)^2 + a(n-1) with a(0) = 1. - Raphie Frank, Nov 12 2012
a(n+1) = A007018(n) = A054377(n) = A100016(n) for n = 1, 2, 3, 4. - Jonathan Sondow, Oct 01 2013
MATHEMATICA
r[n_] := Reduce[ Mod[m^(n+1) - m, n] == 0, m, Integers]; ok[n_] := Range[n]-1 === Simplify[ Mod[ Flatten[ m /. {ToRules[ r[n][[2]] ]}], n], Element[C[1], Integers]]; ok[1] = True; A014117 = {}; Do[ If[ok[n], Print[n]; AppendTo[ A014117, n] ], {n, 1, 2000}] (* Jean-François Alcover, Dec 21 2011 *)
Select[Range@ 2000, Function[n, Times @@ Boole@ Map[Function[m, PowerMod[m, n + 1, n] == Mod[m, n]], Range@ n] > 0]] (* Michael De Vlieger, Dec 30 2016 *)
CROSSREFS
Squarefree terms of A124240. - Robert Israel and Thomas Ordowski, Jun 23 2017
Sequence in context: A355042 A367132 A123137 * A242927 A054377 A349193
KEYWORD
nonn,fini,full,nice
STATUS
approved