|
|
A014117
|
|
Numbers n such that m^(n+1) == m (mod n) holds for all m.
|
|
42
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
"Somebody incorrectly remembered Fermat's little theorem as saying that the congruence a^{n+1} = a (mod n) holds for all a if n is prime" (Zagier). The sequence gives the set of integers n for which this property is in fact true.
If i == j (mod n), then m^i == m^j (mod n) for all m. The latter congruence generally holds for any (m, n)=1 with i == j (mod k), k being the order of m modulo n, i.e., the least power k for which m^k == 1 (mod n). - Lekraj Beedassy, Jul 04 2002
Also, numbers n such that n divides denominator of the n-th Bernoulli number B(n) (cf. A106741). Also, numbers n such that 1^n + 2^n + 3^n + ... + n^n == 1 (mod n). Equivalently, numbers n such that B(n)*n == 1 (mod n). Equivalently, Sum_{prime p, (p-1) divides n} n/p == -1 (mod n). It is easy to see that for n > 1, n must be an even squarefree number. Moreover, the set P of prime divisors of all such n satisfies the property: if p is in P, then p-1 is the product of distinct elements of P. This set is P = {2, 3, 7, 43}, implying that the sequence is finite and complete. - Max Alekseyev, Aug 25 2013
In 2005, B. C. Kellner proved E. W. Weisstein's conjecture that denom(B_n) = n only if n = 1806. - Jonathan Sondow, Oct 14 2013
|
|
LINKS
|
Table of n, a(n) for n=1..5.
M. A. Alekseyev, J. M. Grau, and A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT], 2016-2018.
John H. Castillo and Jhony Fernando Caranguay Mainguez, The set of k-units modulo n, arXiv:1708.06812 [math.NT], 2017.
Yongyi Chen and Tae Kyu Kim, On Generalized Carmichael Numbers, arXiv:2103.04883 [math.NT], 2021.
J. Dyer-Bennet, A Theorem in Partitions of the Set of Positive Integers, Amer. Math. Monthly, 47(1940) pp. 152-4.
L. Halbeisen and N. Hungerbühler, On generalised Carmichael numbers, Hardy-Ramanujan Society, 1999, 22 (2), pp.8-22. (hal-01109575)
J. M. Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^m + 2^m + ... + m^m == n (mod m) with n|m, arXiv 1309.7941 [math.NT], 2013, Monatsh. Math., 177 (2015), 421-436.
B. C. Kellner, The equation denom(B_n) = n has only one solution, preprint 2005.
Don Reble, A014117 and related OEIS sequences (shows there are no other terms)
J. Sondow and K. MacMillan, Reducing the Erdos-Moser equation 1^n + 2^n + … + k^n = (k+1)^n modulo k and k^2, arXiv:1011.2154 [math.NT], 2010; see Prop. 2; Integers, 11 (2011), article A34.
Eric Weisstein's World of Mathematics, Bernoulli Number
D. Zagier, Problems posed at the St Andrews Colloquium, 1996
|
|
FORMULA
|
For n <= 5, a(n) = a(n-1)^2 + a(n-1) with a(0) = 1. - Raphie Frank, Nov 12 2012
a(n+1) = A007018(n) = A054377(n) = A100016(n) for n = 1, 2, 3, 4. - Jonathan Sondow, Oct 01 2013
|
|
MATHEMATICA
|
r[n_] := Reduce[ Mod[m^(n+1) - m, n] == 0, m, Integers]; ok[n_] := Range[n]-1 === Simplify[ Mod[ Flatten[ m /. {ToRules[ r[n][[2]] ]}], n], Element[C[1], Integers]]; ok[1] = True; A014117 = {}; Do[ If[ok[n], Print[n]; AppendTo[ A014117, n] ], {n, 1, 2000}] (* Jean-François Alcover, Dec 21 2011 *)
Select[Range@ 2000, Function[n, Times @@ Boole@ Map[Function[m, PowerMod[m, n + 1, n] == Mod[m, n]], Range@ n] > 0]] (* Michael De Vlieger, Dec 30 2016 *)
|
|
CROSSREFS
|
Squarefree terms of A124240. - Robert Israel and Thomas Ordowski, Jun 23 2017
Cf. A007018, A031971, A054377, A100016, A242927.
Sequence in context: A250309 A115961 A123137 * A242927 A054377 A349193
Adjacent sequences: A014114 A014115 A014116 * A014118 A014119 A014120
|
|
KEYWORD
|
nonn,fini,full,nice
|
|
AUTHOR
|
David Broadhurst
|
|
STATUS
|
approved
|
|
|
|