login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A349193
1-Sondow numbers: numbers j such that p divides j/p + 1 for every prime divisor p of j.
7
1, 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
OFFSET
1,2
COMMENTS
These are the weak primary pseudoperfect numbers mentioned in Grau-Oller-Sondow (2013).
Includes the primary pseudoperfect numbers (A054377). Any weak primary pseudoperfect number which is not a primary pseudoperfect number must have more than 58 distinct prime factors, and therefore must be greater than 10^110; none are known.
A positive integer j is a k-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides j/p + k for every prime power divisor p^s of j.
2) k/j + Sum_{prime p|j} 1/p is an integer.
3) k + Sum_{prime p|j} j/p == 0 (mod j).
4) Sum_{i=1..j} i^A000010(j) == k (mod j).
Numbers m such that A235137(m) == 1 (mod m).
LINKS
J. M. Grau, A. M. Oller-Marcén, and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
J. M. Grau, A. M. Oller-Marcen and J. Sondow, On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n, arXiv:1309.7941 [math.NT], 2013.
MATHEMATICA
Sondow[mu_][n_]:= Sondow[mu][n]= Module[{fa=FactorInteger[n]}, IntegerQ[mu/n+Sum[1/fa[[i, 1]], {i, Length[fa]}]]];
Select[Range[100000], Sondow[1][#]&]
CROSSREFS
(-1) and (-2)-Sondow numbers: A326715, A330069.
2-Sondow to 9-Sondow numbers: A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.
Sequence in context: A014117 A242927 A054377 * A230311 A379686 A276416
KEYWORD
nonn
AUTHOR
STATUS
approved