login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349190
Numbers k such that k equals the product of the sum of its first i digits, with i going from 1 to the total number of digits of k.
3
1, 2, 3, 4, 5, 6, 7, 8, 9, 48, 24192
OFFSET
1,2
COMMENTS
a(12) > 10^10 if it exists. - David A. Corneth, Nov 10 2021
a(12) > 10^11 if it exists. - Malo David, Nov 15 2021
a(12) > 10^17 if it exists. - Jon E. Schoenfield, Nov 28 2021
EXAMPLE
24192 is a term since 24192 = 2*(2+4)*(2+4+1)*(2+4+1+9)*(2+4+1+9+2).
MATHEMATICA
Select[Range[10^5], Times@@Total/@Table[IntegerDigits[#][[;; k]], {k, IntegerLength@#}]==#&] (* Giorgos Kalogeropoulos, Nov 10 2021 *)
PROG
(Python)
def main(N): # prints all terms <= N
for k in range(1, N+1):
n1=str(k)
n2 = 1
for i in range(1, len(n1)+1):
sum1 = 0
for j in range(0, i):
sum1 += int(n1[j])
n2 = n2*sum1
if n2 == k:
print(k, end=", ")
(PARI) isok(k) = {my(d=digits(k)); prod(i=1, #d, sum(j=1, i, d[j])) == k; } \\ Michel Marcus, Nov 10 2021
(Python)
from itertools import islice, accumulate, count
from math import prod
def A349190gen(): return filter(lambda n:prod(accumulate(int(d) for d in str(n))) == n, count(1)) # generator of terms
A349190_list = list(islice(A349190gen(), 11)) # Chai Wah Wu, Dec 02 2021
CROSSREFS
Sequence in context: A219327 A219326 A335205 * A252781 A024660 A257814
KEYWORD
nonn,base,more
AUTHOR
Malo David, Nov 09 2021
STATUS
approved