login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346554
6-Sondow numbers: numbers k such that p^s divides k/p + 6 for every prime power divisor p^s of k.
8
1, 4, 7, 9, 20, 36, 252, 10836, 282348, 13287014532, 314972379612
OFFSET
1,2
COMMENTS
Numbers k such that A235137(k) == 6 (mod k).
A positive integer k is a 6-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 6 for every prime power divisor p^s of k.
2) 6/k + Sum_{prime p|k} 1/p is an integer.
3) 6 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 6 (mod k).
Other numbers in the sequence: 13287014532, 314972379612, 50942529501358130464240627566516
LINKS
J. M. Grau, A. M. Oller-Marcén and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
J. M. Grau, A. M. Oller-Marcen and J. Sondow, On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n, arXiv:1309.7941 [math.NT], 2013-2014.
MATHEMATICA
Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]}, IntegerQ[mu/n+Sum[1/fa[[i, 1]], {i, Length[fa]}]]]
Select[Range[10000000], Sondow[6][#]&]
PROG
(PARI) isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i, 1]); for (j=1, f[i, 2], if ((k/p + 6) % p^j, return(0))); ); return(1); } \\ Michel Marcus, Jan 17 2022
CROSSREFS
(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.
Sequence in context: A281144 A103073 A166742 * A022541 A330695 A063798
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(10)-a(11) verified by Martin Ehrenstein, Jan 21 2022
STATUS
approved