login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A346555
7-Sondow numbers: numbers k such that p^s divides k/p + 7 for every prime power divisor p^s of k.
7
1, 2, 6, 15, 78, 294, 12642, 539026980558
OFFSET
1,2
COMMENTS
Numbers k such that A235137(k) == 7 (mod k).
A positive integer k is a 7-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 7 for every prime power divisor p^s of k.
2) 7/k + Sum_{prime p|k} 1/p is an integer.
3) 7 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 7 (mod k).
LINKS
J. M. Grau, A. M. Oller-Marcén and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
J. M. Grau, A. M. Oller-Marcen and J. Sondow, On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n, arXiv:1309.7941 [math.NT], 2013-2014.
MATHEMATICA
Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]}, IntegerQ[mu/n+Sum[1/fa[[i, 1]], {i, Length[fa]}]]]
Select[Range[10000000], Sondow[7][#]&]
CROSSREFS
(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, this sequence, A346556, A346557.
Sequence in context: A307180 A009455 A244443 * A356223 A319336 A007709
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(8) from Martin Ehrenstein, Feb 04 2022
STATUS
approved