Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jan 21 2022 07:51:11
%S 1,4,7,9,20,36,252,10836,282348,13287014532,314972379612
%N 6-Sondow numbers: numbers k such that p^s divides k/p + 6 for every prime power divisor p^s of k.
%C Numbers k such that A235137(k) == 6 (mod k).
%C A positive integer k is a 6-Sondow number if satisfies any of the following equivalent properties:
%C 1) p^s divides k/p + 6 for every prime power divisor p^s of k.
%C 2) 6/k + Sum_{prime p|k} 1/p is an integer.
%C 3) 6 + Sum_{prime p|k} k/p == 0 (mod k).
%C 4) Sum_{i=1..k} i^phi(k) == 6 (mod k).
%C Other numbers in the sequence: 13287014532, 314972379612, 50942529501358130464240627566516
%H Github, <a href="https://jonathansondow.github.io/">Jonathan Sondow (1943 - 2020)</a>
%H J. M. Grau, A. M. Oller-Marcén and D. Sadornil, <a href="https://arxiv.org/abs/2111.14211">On µ-Sondow Numbers</a>, arXiv:2111.14211 [math.NT], 2021.
%H J. M. Grau, A. M. Oller-Marcen and J. Sondow, <a href="https://arxiv.org/abs/1309.7941">On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n</a>, arXiv:1309.7941 [math.NT], 2013-2014.
%t Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
%t Select[Range[10000000],Sondow[6][#]&]
%o (PARI) isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 6) % p^j, return(0)));); return(1);} \\ _Michel Marcus_, Jan 17 2022
%Y Cf. A054377, A007850, A235137, A348058, A348059.
%Y (-1) and (-2) -Sondow numbers: A326715, A330069.
%Y 1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.
%K nonn,more
%O 1,2
%A _José María Grau Ribas_, Jan 16 2022
%E a(10)-a(11) verified by _Martin Ehrenstein_, Jan 21 2022