login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014115
Order of a certain Clifford group in dimension 2^n (the automorphism group of the Barnes-Wall lattice for n != 3).
4
2, 8, 1152, 2580480, 89181388800, 48126558103142400, 409825748158189771161600, 55428899652335313894424707072000
OFFSET
0,1
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 129.
LINKS
A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), arXiv:quant-ph/9608006, 1996-1997; IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
MAPLE
2^(n^2+n+1) * (2^n - 1) * product('2^(2*i)-1', 'i'=1..n-1);
PROG
(Python)
from math import prod
def A014115(n): return 2 if n == 0 else ((1<<n)-1)*prod((1<<i)-1 for i in range(2, 2*n-1, 2)) << n*(n+1)+1 # Chai Wah Wu, Jun 20 2022
CROSSREFS
Agrees with A014116 except at n=3. Cf. A001309, A003956.
Sequence in context: A061591 A103085 A084148 * A014116 A027668 A121015
KEYWORD
nonn
STATUS
approved