login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302343
Solutions to the congruence 1^n + 2^n + ... + n^n == 79 (mod n).
10
1, 2, 6, 79, 158, 474, 3318, 142674
OFFSET
1,2
COMMENTS
Also, integers n such that B(n)*n == 79 (mod n), where B(n) is the n-th Bernoulli number.
Also, integers n such that Sum_{prime p, (p-1) divides n} n/p == -79 (mod n).
Although this sequence is finite, the prime 79 does not belong to A302345.
LINKS
M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
CROSSREFS
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), this sequence (m=79), A302344 (m=193).
Cf. A302345.
Sequence in context: A376061 A076146 A114552 * A244084 A362581 A352284
KEYWORD
nonn,full,fini
AUTHOR
Max Alekseyev, Apr 05 2018
STATUS
approved