login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280041
Solutions to the congruence 1^n+2^n+...+n^n == 19 (mod n).
11
1, 2, 6, 19, 38, 114, 798, 34314
OFFSET
1,2
LINKS
M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
MATHEMATICA
f[n_] := Mod[Sum[PowerMod[k, n, n], {k, 1, n}] - 19, n];
For[n = 1, n < 40000, n++, If[f[n] == 0, Print[n]]] (* Jean-François Alcover, Sep 06 2018 *)
CROSSREFS
Sequence in context: A213400 A282080 A273180 * A058081 A192709 A034533
KEYWORD
nonn,fini,full
AUTHOR
N. J. A. Sloane, Dec 29 2016
STATUS
approved