login
A058081
a(1) = 1; a(n+1) = sum of terms in continued fraction for the sum of the continued fractions, [a(1); a(2), a(3),...,a(n-1),a(n)] and [a(n); a(n-1), a(n-2),...,a(2), a(1)].
0
1, 2, 6, 19, 42, 142, 223, 326, 496, 715, 1000, 1394, 9958, 10626, 12033, 12597, 13805, 14816, 20158, 21264, 37088, 41875, 45425, 47766, 49571, 327635, 330187, 332469, 341477, 344570, 450050, 457785, 460921, 463931, 469795, 473848, 479976
OFFSET
1,2
EXAMPLE
[a(1); a(2)] +[a(2); a(1)] = 9/2 = [4; 2]. So a(3) = 4 + 2 = 6.
CROSSREFS
Sequence in context: A282080 A273180 A280041 * A192709 A034533 A192711
KEYWORD
nonn
AUTHOR
Leroy Quet, Nov 24 2000
STATUS
approved