OFFSET
1,3
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = gcd(f(n+1), f(n)) where f(n) = binomial(prime(n+1), prime(n)). - Joerg Arndt, Apr 05 2014
EXAMPLE
n = 8, a(8) = gcd(C(prime(10), prime(9)), C(prime(9), prime(8))) = gcd(C(29, 23), C(23, 19)) = gcd(8855, 475020) = gcd(5*7*11*23, 2^2*3^2*5*7*13*29) = 5*7 = 35.
MAPLE
A058078:=n->gcd(binomial(ithprime(n+2), ithprime(n+1)), binomial(ithprime(n+1), ithprime(n))); seq(A058078(n), n=1..100); # Wesley Ivan Hurt, Apr 01 2014
MATHEMATICA
GCD[Binomial[Last[#], #[[2]]], Binomial[#[[2]], First[#]]]&/@ Partition[ Prime[ Range[90]], 3, 1] (* Harvey P. Dale, May 05 2011 *)
PROG
(PARI) a(n, p=prime(n))=my(q=nextprime(p+1), r=nextprime(q+1)); gcd(binomial(r, q), binomial(q, p)) \\ Charles R Greathouse IV, Nov 18 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 13 2000
EXTENSIONS
Edited by Wolfdieter Lang, Apr 16 2014
STATUS
approved