login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303864 Array read by antidiagonals: T(n,k) = number of noncrossing path sets on k*n nodes up to rotation with each path having exactly k nodes. 7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 6, 2, 1, 1, 4, 36, 38, 3, 1, 1, 10, 210, 960, 384, 6, 1, 1, 16, 1176, 18680, 35956, 4425, 14, 1, 1, 36, 6328, 313664, 2280910, 1588192, 57976, 34, 1, 1, 64, 32896, 4683168, 111925464, 323840016, 77381016, 807318, 95, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,12

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..1274

EXAMPLE

Array begins:

=======================================================

n\k| 1 2 3 4 5 6

---+---------------------------------------------------

0 | 1 1 1 1 1 1 ...

1 | 1 1 1 3 4 10 ...

2 | 1 1 6 36 210 1176 ...

3 | 1 2 38 960 18680 313664 ...

4 | 1 3 384 35956 2280910 111925464 ...

5 | 1 6 4425 1588192 323840016 46552781760 ...

6 | 1 14 57976 77381016 50668922540 21346459738384 ...

...

MATHEMATICA

nmax = 10; seq[n_, k_] := Module[{p, q, h}, p = 1 + InverseSeries[ x/(k*2^If[k == 1, 0, k - 3]*(1 + x)^k) + O[x]^n, x ]; h = p /. x -> x^2 + O[x]^n; q = x*D[p, x]/p; Integrate[((p - 1)/k + Sum[EulerPhi[d]*(q /. x -> x^d + O[x]^n), {d, 2, n}])/x, x] + If[OddQ[k], 0, 2^(k/2 - 2)*x*h^(k/2)] + 1];

Clear[col]; col[k_] := col[k] = CoefficientList[seq[nmax, k], x];

T[n_, k_] := col[k][[n + 1]];

Table[T[n - k, k], {n, 0, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jul 04 2018, after Andrew Howroyd *)

PROG

(PARI)

seq(n, k)={ \\ gives gf of k'th column

my(p=1 + serreverse( x/(k*2^if(k==1, 0, k-3)*(1 + x)^k) + O(x*x^n) ));

my(h=subst(p, x, x^2+O(x*x^n)), q=x*deriv(p)/p);

intformal( ((p-1)/k + sum(d=2, n, eulerphi(d)*subst(q, x, x^d+O(x*x^n))))/x) + if(k%2, 0, 2^(k/2-2)*x*h^(k/2)) + 1;

}

Mat(vector(6, k, Col(seq(7, k))))

CROSSREFS

Columns 2..4 are A002995(n+1), A303865, A303866.

Row n=1 is A051437(k-3).

Cf. A302828, A303844, A303869.

Cf. A295224 (polygon dissections), A303694 (sets of cycles instead of paths).

Sequence in context: A004158 A221705 A332505 * A058178 A058078 A016551

Adjacent sequences: A303861 A303862 A303863 * A303865 A303866 A303867

KEYWORD

nonn,tabl

AUTHOR

Andrew Howroyd, May 01 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 22:05 EST 2022. Contains 358698 sequences. (Running on oeis4.)