OFFSET
1,9
COMMENTS
The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called H.
T(n,k) is the number of oriented polyominoes containing n k-gonal tiles of the hyperbolic regular tiling with Schläfli symbol {k,oo}. Stereographic projections of several of these tilings on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. T(n,2) could represent polyominoes of the Euclidean regular tiling with Schläfli symbol {2,oo}; T(n,2) = 1. - Robert A. Russell, Jan 21 2024
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
E. Krasko, A. Omelchenko, Brown's Theorem and its Application for Enumeration of Dissections and Planar Trees, The Electronic Journal of Combinatorics, 22 (2015), #P1.17.
Wikipedia, Fuss-Catalan number
FORMULA
T(n,k) ~ A295222(n,k)/n for fixed k.
EXAMPLE
Array begins:
=====================================================
n\k| 3 4 5 6 7 8
---|-------------------------------------------------
1 | 1 1 1 1 1 1 ...
2 | 1 1 1 1 1 1 ...
3 | 1 2 2 3 3 4 ...
4 | 4 7 12 19 26 35 ...
5 | 6 25 57 118 203 332 ...
6 | 19 108 366 931 1989 3766 ...
7 | 49 492 2340 7756 20254 45448 ...
8 | 150 2431 16252 68685 219388 580203 ...
9 | 442 12371 115940 630465 2459730 7684881 ...
10 | 1424 65169 854981 5966610 28431861 104898024 ...
...
MATHEMATICA
u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
T[n_, k_] := u[n, k, 1] + (If[EvenQ[n], u[n/2, k, 1], 0] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#]&]/k;
Table[T[n - k + 1, k], {n, 1, 13}, {k, n, 3, -1}] // Flatten (* Jean-François Alcover, Nov 21 2017, after Andrew Howroyd *)
PROG
(PARI) \\ here u is Fuss-Catalan sequence with p = k+1.
u(n, k, r)={r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
T(n, k) = u(n, k, 1) + (if(n%2==0, u(n/2, k, 1))-u(n, k, 2))/2 + sumdiv(gcd(n-1, k), d, eulerphi(d)*u((n-1)/d, k, k/d))/k;
for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
(Python)
from sympy import binomial, gcd, totient, divisors
def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
def T(n, k): return u(n, k, 1) + ((u(n//2, k, 1) if n%2==0 else 0) - u(n, k, 2))//2 + sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI code
CROSSREFS
KEYWORD
AUTHOR
Andrew Howroyd, Nov 17 2017
STATUS
approved