The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295224 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals up to rotation (k >= 3). 12
 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 2, 7, 6, 1, 1, 3, 12, 25, 19, 1, 1, 3, 19, 57, 108, 49, 1, 1, 4, 26, 118, 366, 492, 150, 1, 1, 4, 35, 203, 931, 2340, 2431, 442, 1, 1, 5, 46, 332, 1989, 7756, 16252, 12371, 1424, 1, 1, 5, 57, 494, 3766, 20254, 68685, 115940, 65169, 4522 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 COMMENTS The polygon prior to dissection will have n*(k-2)+2 sides. In the Harary, Palmer and Read reference these are the sequences called H. LINKS Andrew Howroyd, Table of n, a(n) for n = 1..1275 F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389. E. Krasko, A. Omelchenko, Brown's Theorem and its Application for Enumeration of Dissections and Planar Trees, The Electronic Journal of Combinatorics, 22 (2015), #P1.17. Wikipedia, Fuss-Catalan number FORMULA T(n,k) ~ A295222(n,k)/n for fixed k. EXAMPLE Array begins:   =====================================================   n\k|    3     4      5       6        7         8   ---|-------------------------------------------------    1 |    1     1      1       1        1         1 ...    2 |    1     1      1       1        1         1 ...    3 |    1     2      2       3        3         4 ...    4 |    4     7     12      19       26        35 ...    5 |    6    25     57     118      203       332 ...    6 |   19   108    366     931     1989      3766 ...    7 |   49   492   2340    7756    20254     45448 ...    8 |  150  2431  16252   68685   219388    580203 ...    9 |  442 12371 115940  630465  2459730   7684881 ...   10 | 1424 65169 854981 5966610 28431861 104898024 ...   ... MATHEMATICA u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r); T[n_, k_] := u[n, k, 1] + (If[EvenQ[n], u[n/2, k, 1], 0] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#]&]/k; Table[T[n - k + 1, k], {n, 1, 13}, {k, n, 3, -1}] // Flatten (* Jean-François Alcover, Nov 21 2017, after Andrew Howroyd *) *) PROG (PARI) \\ here u is Fuss-Catalan sequence with p = k+1. u(n, k, r)={r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)} T(n, k) = u(n, k, 1) + (if(n%2==0, u(n/2, k, 1))-u(n, k, 2))/2 + sumdiv(gcd(n-1, k), d, eulerphi(d)*u((n-1)/d, k, k/d))/k; for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print); (Python) from sympy import binomial, gcd, totient, divisors def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r) def T(n, k): return u(n, k, 1) + ((u(n//2, k, 1) if n%2==0 else 0) - u(n, k, 2))//2 + sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI code CROSSREFS Columns k=3..6 are A001683(n+3), A005034, A005038, A221184(n-1). Cf. A033282, A070914, A295222, A295259, A295260. Sequence in context: A007738 A186520 A158570 * A074749 A194524 A117136 Adjacent sequences:  A295221 A295222 A295223 * A295225 A295226 A295227 KEYWORD nonn,tabl AUTHOR Andrew Howroyd, Nov 17 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 06:11 EDT 2021. Contains 343836 sequences. (Running on oeis4.)