login
A295227
a(n) = sum_{k=0,...,[n/2]} s(n-k,k)^2, s = A048994, Stirling numbers of the first kind.
0
1, 0, 1, 1, 5, 45, 698, 16936, 594702, 28564021, 1799119626, 143863537330, 14236046853139, 1707698666758297, 244136528082097062, 41008147506862052681, 7995945735393199219626, 1791074412870104676689001, 456745672286592586379503743
OFFSET
0,5
LINKS
Edyta Hetmaniok, Barbara Smoleń, Roman Wituła, The Stirling triangles, Proceedings of the Symposium for Young Scientists in Technology, Engineering and Mathematics (SYSTEM 2017), Kaunas, Lithuania, April 28, 2017, p. 35-41.
CROSSREFS
Sequence in context: A113382 A304919 A132688 * A167812 A155104 A243951
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Nov 18 2017
STATUS
approved