login
A295229
Number of tilings of the n X n grid, using diagonal lines to connect the grid points.
6
1, 6, 84, 8548, 4203520, 8590557312, 70368815480832, 2305843028004192256, 302231454912728264605696, 158456325028538104598816096256, 332306998946228986960926214931349504, 2787593149816327892769293535238052808491008
OFFSET
1,2
COMMENTS
The grids are counted up to reflection and rotation.
a(n) <= A295223(n).
LINKS
Andrew Howroyd, Derivation of Formula
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023. See p. 3.
FORMULA
From Andrew Howroyd, Nov 19 2017: (Start)
a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + 3*2^(n^2/2) + 2*2^(n^2/4)) / 8 for n even.
a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + 2^((n^2+1)/2)) / 8 for n odd. (End)
EXAMPLE
For n = 2, the a(2) = 6 tilings are:
//, \/, /\, \\, /\, and \/.
// // // // \/ /\
MATHEMATICA
Array[(2^(#^2) + 2*2^(# (# + 1)/2) + If[EvenQ@ #, 3*2^(#^2/2) + 2*2^(#^2/4), 2^((#^2 + 1)/2)])/8 &, 12] (* Michael De Vlieger, Apr 12 2018 *)
PROG
(PARI) a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + if(n%2, 2^((n^2+1)/2), 3*2^(n^2/2) + 2*2^(n^2/4)))/8; \\ Andrew Howroyd, Nov 19 2017
CROSSREFS
Sequence in context: A293455 A334516 A331014 * A330849 A245232 A284522
KEYWORD
nonn
AUTHOR
Peter Kagey, Nov 18 2017
EXTENSIONS
a(5)-a(12) from Andrew Howroyd, Nov 19 2017
STATUS
approved