The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295229 Number of tilings of the n X n grid, using diagonal lines to connect the grid points. 2
 1, 6, 84, 8548, 4203520, 8590557312, 70368815480832, 2305843028004192256, 302231454912728264605696, 158456325028538104598816096256, 332306998946228986960926214931349504, 2787593149816327892769293535238052808491008 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The grids are counted up to reflection and rotation. a(n) <= A295223(n). LINKS Peter Kagey, Table of n, a(n) for n = 1..57 Andrew Howroyd, Derivation of Formula Peter Kagey, Example of the 6 tilings of the 2 X 2 grid. FORMULA From Andrew Howroyd, Nov 19 2017: (Start) a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + 3*2^(n^2/2) + 2*2^(n^2/4)) / 8 for n even. a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + 2^((n^2+1)/2)) / 8 for n odd. (End) EXAMPLE For n = 2, the a(2) = 6 tilings are: //, \/, /\, \\, /\, and \/. //  //  //  //  \/      /\ MATHEMATICA Array[(2^(#^2) + 2*2^(# (# + 1)/2) + If[EvenQ@ #, 3*2^(#^2/2) + 2*2^(#^2/4), 2^((#^2 + 1)/2)])/8 &, 12] (* Michael De Vlieger, Apr 12 2018 *) PROG (PARI) a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + if(n%2, 2^((n^2+1)/2), 3*2^(n^2/2) + 2*2^(n^2/4)))/8; \\ Andrew Howroyd, Nov 19 2017 CROSSREFS Cf. A054247, A295223. Sequence in context: A293455 A334516 A331014 * A330849 A245232 A284522 Adjacent sequences:  A295226 A295227 A295228 * A295230 A295231 A295232 KEYWORD nonn AUTHOR Peter Kagey, Nov 18 2017 EXTENSIONS a(5)-a(12) from Andrew Howroyd, Nov 19 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 14:19 EDT 2022. Contains 353746 sequences. (Running on oeis4.)