login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295231
Numerators of (-1)^(n+1) * (2*n)! * (2^(2*n)+1)/(B_{2*n} * 2^(4*n-1)), where B_{n} is the Bernoulli number.
2
-4, 15, 765, 61425, 1214325, 95893875, 2615987248875, 298915241625, 10670785663663125, 10218227413637368125, 1605716856726047690625, 56404413605424162403125, 3387648475383059302662121875, 744538093174369303262578125
OFFSET
0,1
COMMENTS
Pi^(2*n) > a(n)/A295232(n) for n > 0.
LINKS
EXAMPLE
Zeta(2) = Pi^2/6 > 1 + 1/2^2, so Pi^2 > 15/2.
Zeta(4) = Pi^4/90 > 1 + 1/2^4, so Pi^4 > 765/8.
Zeta(6) = Pi^6/945 > 1 + 1/2^6, so Pi^6 > 61425/64.
PROG
(PARI) {a(n) = numerator((-1)^(n+1)*(2*n)!*(2^(2*n)+1)/(bernfrac(2*n)*2^(4*n-1)))}
CROSSREFS
Cf. A002432/A046988, A295232 (denominators).
Sequence in context: A006524 A299683 A341598 * A070037 A297859 A298127
KEYWORD
sign,frac
AUTHOR
Seiichi Manyama, Nov 18 2017
STATUS
approved