login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284522
Worst cases for Hart's one-line factorization (OLF) method with multiplier M = 1, see comments.
1
6, 85, 259, 527, 1177, 1963, 2881, 6403, 6887, 12319, 23701, 40363, 65473, 93011, 144377, 181429, 273487, 337499, 426347, 557983, 702157, 851927, 1044413, 1295017, 1437599, 1763537, 2211119, 2556751, 2982503, 3553027, 3853327
OFFSET
1,1
COMMENTS
Hart's algorithm begins with trial division to the cube root of the number and a check for squares, so numbers factored by these means are removed (leaving A138109). The remaining numbers are compared on the basis of the number of steps Hart's algorithm requires to factor them; new records are members of this sequence.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..214
William B. Hart, A one line factoring algorithm, Journal of the Australian Mathematical Society 92 (2012), pp. 61-69.
EXAMPLE
OLF factors 6 on step 2: s = ceil(sqrt(2*6)) = 4, s^2 = 4 mod 6; 4 = 2^2, gcd(6, 4-2) = 2.
OLF factors 85 on step 3: s = ceil(sqrt(3*85)) = 16, s^2 = 1 mod 85; 1 = 1^2, gcd(85, 16-1) = 5.
OLF factors 259 on step 5: s = ceil(sqrt(5*259)) = 36, s^2 = 1 mod 259; 1 = 1^2, gcd(259, 36-1) = 7.
OLF factors 527 on step 8: s = ceil(sqrt(8*527)) = 65, s^2 = 9 mod 527; 9 = 3^2, gcd(527, 65-3) = 31.
OLF factors 1177 on step 9: s = ceil(sqrt(9*1177)) = 103, s^2 = 16 mod 1177; 16 = 4^2, gcd(1177, 103-4) = 11.
PROG
(PARI) listA138109(lim)=if(lim<6, return([])); my(v=List([6])); forprime(p=3, sqrtint(1+lim\=1)-1, forprime(q=p+2, min(p^2-2, lim\p), listput(v, p*q))); Set(v)
g(n)=for(i=1, n, if(issquare((sqrtint(i*n-1)+1)^2%n), return(i)))
list(lim)=my(u=Vecsmall(listA138109(lim)), v=List(), r, t); for(i=1, #u, t=g(u[i]); if(t>r, r=t; listput(v, u[i]))); u=0; Vec(v) \\ Charles R Greathouse IV, Mar 28 2017
(PARI) make(from, to)=my(v=List()); from=ceil(from); forprime(p=max(sqrtnint(from, 3)+1, 3), sqrtint(1+to\=1)-1, forprime(q=max(p+2, from/p), min(p^2-2, to\p), listput(v, p*q))); Set(v)
g(n)=for(i=1, n, if(issquare((sqrtint(i*n-1)+1)^2%n), return(i)))
list(lim)=my(u, v=List([6]), r, t, step=10^7); forstep(n=85, lim, step, u=make(n, min(n+step-1, lim)); for(i=1, #u, t=g(u[i]); if(t>r, r=t; listput(v, u[i]); print1(u[i]", ")))); Vec(v) \\ Charles R Greathouse IV, Apr 03 2017
CROSSREFS
Subsequence of A138109.
Sequence in context: A295229 A330849 A245232 * A167252 A290011 A164266
KEYWORD
nonn
AUTHOR
STATUS
approved