|
|
A284524
|
|
0-limiting word of the morphism 0->1, 1->0010.
|
|
6
|
|
|
0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1
|
|
COMMENTS
|
The morphism 0->1, 1-> 0010 has two limiting words. If the number of iterations is even, the 0-word evolves from 0 -> 1 -> 0010 -> 1100101 -> 0010001011001010010; if the number of iterations is odd, the 1-word evolves from 0 -> 1 -> 0010 -> 1100101 ->, as in A284527.
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
s = Nest[Flatten[# /. {0 -> {1}, 1 -> {0, 0, 1, 0}}] &, {0}, 8] (* A284524 *)
Flatten[Position[s, 0]] (* A284525 *)
Flatten[Position[s, 1]] (* A284526 *)
|
|
CROSSREFS
|
Cf. A284525, A284526, A284527.
Sequence in context: A309766 A354033 A328979 * A226474 A309768 A080887
Adjacent sequences: A284521 A284522 A284523 * A284525 A284526 A284527
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Clark Kimberling, Apr 05 2017
|
|
STATUS
|
approved
|
|
|
|