|
|
A284527
|
|
1-limiting word of the morphism 0->1, 1->0010.
|
|
6
|
|
|
1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1
|
|
COMMENTS
|
The morphism 0->1, 1-> 0010 has two limiting words. If the number of iterations is even, the 0-word evolves from 0 -> 1 -> 0010 -> 1100101 -> 0010001011001010010; if the number of iterations is odd, the 1-word evolves from 0 -> 1 -> 0010 -> 1100101 ->, as in A284527.
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
s = Nest[Flatten[# /. {0 -> {1}, 1 -> {0, 0, 1, 0}}] &, {0}, 9] (* A284527 *)
Flatten[Position[s, 0]] (* A284528 *)
Flatten[Position[s, 1]] (* A284529 *)
|
|
CROSSREFS
|
Cf. A284524, A284528, A284529.
Sequence in context: A239200 A157686 A181115 * A151666 A214284 A191747
Adjacent sequences: A284524 A284525 A284526 * A284528 A284529 A284530
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Clark Kimberling, Apr 05 2017
|
|
STATUS
|
approved
|
|
|
|