login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058084
Smallest m such that binomial(m,k) = n for some k.
9
0, 2, 3, 4, 5, 4, 7, 8, 9, 5, 11, 12, 13, 14, 6, 16, 17, 18, 19, 6, 7, 22, 23, 24, 25, 26, 27, 8, 29, 30, 31, 32, 33, 34, 7, 9, 37, 38, 39, 40, 41, 42, 43, 44, 10, 46, 47, 48, 49, 50, 51, 52, 53, 54, 11, 8, 57, 58, 59, 60, 61, 62, 63, 64, 65, 12, 67, 68, 69, 8, 71, 72, 73, 74, 75, 76
OFFSET
1,2
COMMENTS
Index of first row of Pascal's triangle (A007318) containing n.
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe, with 3 corrections).
FORMULA
a(A006987(n)) < A006987(n); a(A137905(n)) = A137905(n). - Reinhard Zumkeller, Mar 20 2009
A007318(a(n), A357327(n)) = n. - Pontus von Brömssen, Sep 24 2022
EXAMPLE
a(28)=8 because 28 is first found in row 8 of Pascal's triangle (where the first row is counted as 0).
MAPLE
with(combinat): for n from 2 to 150 do flag := 0: for m from 1 to 150 do for k from 1 to m do if binomial(m, k) = n then printf(`%d, `, m); flag := 1; break fi: od: if flag=1 then break fi; od: od:
MATHEMATICA
nmax = 76; t = Table[Binomial[m, k], {m, 0, nmax}, {k, 0, m}]; a[n_] := Position[t, n, 2, 1][[1, 1]]-1; Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Nov 30 2011 *)
PROG
(Haskell)
import Data.List (findIndex); import Data.Maybe (fromJust)
a058084 n = fromJust $ findIndex (elem n) a007318_tabl
-- Reinhard Zumkeller, Nov 09 2011
(PARI) a(n) = my(k=0); while (!vecsearch(vector((k+2)\2, i, binomial(k, i-1)), n), k++); k; \\ Michel Marcus, Dec 07 2021
CROSSREFS
KEYWORD
nice,nonn,easy
AUTHOR
Fabian Rothelius, Nov 25 2000
EXTENSIONS
More terms from James A. Sellers, Nov 27 2000
STATUS
approved