login
A074882
Number of integers in {1, 2, ..., sigma(n)} that are coprime to n.
0
1, 2, 3, 4, 5, 4, 7, 8, 9, 7, 11, 9, 13, 10, 13, 16, 17, 13, 19, 17, 19, 16, 23, 20, 25, 19, 27, 24, 29, 19, 31, 32, 29, 25, 34, 31, 37, 28, 35, 36, 41, 27, 43, 38, 42, 34, 47, 41, 49, 38, 45, 45, 53, 40, 53, 51, 51, 43, 59, 45, 61, 46, 60, 64, 63, 43, 67, 59, 61, 50, 71, 65, 73
OFFSET
1,2
COMMENTS
Compare the definition of a(n) to phi(n) = number of integers in {1, 2, ..., n} that are coprime to n.
FORMULA
a(n) = Sum_{d|n} mu(d)*floor(sigma(n)/d). - Ridouane Oudra, May 12 2024
EXAMPLE
There are four numbers in {1, 2, ..., sigma(4) = 7} that are coprime to 4, i.e. 1, 3, 5, 7. Hence a(4) = 4.
MAPLE
with(numtheory): seq(add(mobius(d)*floor(sigma(n)/d), d in divisors(n)), n=1..100) ; # Ridouane Oudra, May 12 2024
MATHEMATICA
h[n_] := Module[{l}, l = {}; For[i = 1, i <= DivisorSigma[1, n], i++, If[GCD[i, n] == 1, l = Append[l, i]]]; l]; Table[Length[h[i]], {i, 1, 100}]
CROSSREFS
Cf. A000203.
Sequence in context: A079881 A349958 A058084 * A373735 A377487 A273284
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Oct 04 2002
STATUS
approved