login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A074885 Numbers not of the form x^2 + M*y^2 for integers x > 0, y > 1, M > 0. 2
1, 2, 3, 4, 6, 7, 11, 14, 15, 23, 30, 35, 38, 39, 42, 47, 62, 71, 78, 83, 87, 95, 110, 119, 138, 143, 155, 158, 167, 182, 195, 203, 210, 215, 222, 227, 230, 255, 263, 282, 287, 302, 318, 327, 335, 383, 390, 395, 398, 435, 447, 455, 462, 483, 503 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

"... 730847, 911027, 1011218, 1122558, 1153547, 1191302, 1195862, 1198823, 1200023, 1215843, 1230990, 1586343, 1607627, 1875902. There is strong numerical evidence that the series ends at 1875902. I calculate that the series has 436 members <= 1875902. 1875902 looks like the largest natural number n with this property (I have checked up to 100,000,000). If true, every sufficiently large number is expressible as x^2 + M*y^2 with x > 0, y > 1, M > 0), or (prosaically) as the sum of a square (A000290) and a not squarefree number (A013929)." - Chris Boyd (and modified by Robert G. Wilson v, Sep 30 2012)

Number of terms less than or equal to 10^k, k=1...7: 6, 22, 81, 210, 367, 424, 436.

Least number of the form x^2 + m*y^2 in k different ways, k=0...: 1, 5, 21, 13, 25, 37, 41, 68, 52, 81, 73, 100, 97, 160, 169, 148, 145, 153, 193, 261, 288, ..., . - Robert G. Wilson v, Sep 30 2012

REFERENCES

Postings to sci.math Aug 24 2002, 03:04PM and Aug 26 2002, 03:07PM by Chris Boyd

LINKS

T. D. Noe, Table of n, a(n) for n = 1..436 (probably complete)

Eric Weisstein's World of Mathematics, Pell Equation.

MATHEMATICA

notOfTheFormQ[n_] := Do[r = Reduce[x >= 1 && y > 1 && x^2 + m*y^2 == n, {x, y}, Integers]; If[r =!= False, Return[True]], {m, 1, Ceiling[(n - 1)/4]}] =!= True; Reap[ Do[ If[ notOfTheFormQ[n], Print[n]; Sow[n]], {n, 1, 600}]][[2, 1]] (* Jean-Fran├žois Alcover, Sep 28 2012 *)

fQ[n_] := Block[{flg = 0, lmt = 1 + Floor@ Sqrt@ n, m, x, y = 2}, While[y < lmt && flg == 0, x = 1; While[m = Floor[(n - x^2)/y^2]; m > 0 && Mod[n - x^2, y^2] != 0, x++]; If[n == x^2 + m*y^2, flg = 1]; y++]; flg == 0]; Select[Range@509, fQ] (* much faster than the above, Robert G. Wilson v, Sep 29 2012 *)

mx = 1000; cnt = Table[0, {mx}]; Do[q = x^2 + m*y^2; If[q <= mx, cnt[[q]]++], {m, (mx - 1)/4}, {x, Sqrt[mx - 4 m]}, {y, 2, Sqrt[(mx - x^2)/m]}]; Flatten[Position[cnt, 0]] (* T. D. Noe, Sep 28 2012 *)

PROG

(Perl) $xleast=1; $yleast=2; $start=1; $range=2000000; $xprev=$xleast-1; for ($k=0; ($k+$yleast)*($k+$yleast) <= $start+$range; $k++ ) { $asquares[$k]=($k+$yleast)*($k+$yleast); } for ($k=$start; $k<$start+$range; $k++ ) {&donum; } sub donum { $nm=$k-$xprev*$xprev; for ($i=$xprev; $i<=$nm; $i++ ) {if ( ($nm -= $i+$i+1) < 0 ) { last; } if (&ncheck($nm) > 0) { return; } } printf("%d\n", $k); } sub ncheck { $j=0; while ( ($sq = $asquares[$j++ ]) <= $_[0] ) { if ($_[0] % $sq == 0) { return 1; } } return 0; }

(PARI) isOK(n) = my(k=1); while(k*k<n, if(!issquarefree(n-k^2), return(0)); k++); 1 s=[]; for(n=1, 1000, if(isOK(n), s=concat(s, n))); s \\ Colin Barker, Apr 26 2014

CROSSREFS

Sequence in context: A113243 A130690 A308189 * A215231 A301512 A091336

Adjacent sequences:  A074882 A074883 A074884 * A074886 A074887 A074888

KEYWORD

nonn,nice

AUTHOR

Chris Boyd and Robert G. Wilson v, Sep 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 14:47 EDT 2020. Contains 334684 sequences. (Running on oeis4.)