login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A058087
Triangle read by rows, giving coefficients of the ménage hit polynomials ordered by descending powers. T(n, k) for 0 <= k <= n.
11
1, 2, -1, 2, 0, 0, 2, 3, 0, 1, 2, 8, 4, 8, 2, 2, 15, 20, 40, 30, 13, 2, 24, 60, 152, 210, 192, 80, 2, 35, 140, 469, 994, 1477, 1344, 579, 2, 48, 280, 1232, 3660, 7888, 11672, 10800, 4738, 2, 63, 504, 2856, 11268, 32958, 70152, 104256, 97434, 43387
OFFSET
0,2
COMMENTS
Riordan's book (page 197) notes that an alternative convention is to put 2 in the first row of the triangle. - William P. Orrick, Aug 09 2020
REFERENCES
I. Kaplansky and J. Riordan, The probleme des menages, Scripta Mathematica, 1946, 12 (2), 113-124.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 198.
Tolman, L. Kirk, "Extensions of derangements", Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing, Humboldt State University, Arcata, California, September 5-7, 1979. Vol. 26. Utilitas Mathematica Pub., 1980. See Table I. - N. J. A. Sloane, Jul 06 2014
LINKS
I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. [Scan of annotated copy]
Anthony C. Robin, 90.72 Circular Wife Swapping, The Mathematical Gazette, Vol. 90, No. 519 (Nov., 2006), pp. 471-478.
FORMULA
G.f.: (1-x*(y-1))*Sum_{n>=0} ( n!*(x*y)^n/(1+x*(y-1))^(2*n+1) ). - Vladeta Jovovic, Dec 14 2009
Row n of the triangle lists the coefficients of the polynomial U_n(t) = Sum_{k=0..n} ((2*n/(2*n-k))*binomial(2*n-k,k)*(n-k)!*(t-1)^k, with higher order terms first (Kaplansky and Riordan). - William P. Orrick, Aug 09 2020
T(n, k) = Sum_{j=0..k} (-1)^j*(2*n*(k-j)!/(n+k-j))*binomial(n-k+j, n-k)*binomial(n+k-j, n-k+j), with T(0, k) = 1. - G. C. Greubel, May 15 2021 [Corrected by Sean A. Irvine, Jul 23 2022]
EXAMPLE
The triangle begins:
1;
2, -1;
2, 0, 0;
2, 3, 0, 1;
2, 8, 4, 8, 2;
2, 15, 20, 40, 30, 13;
2, 24, 60, 152, 210, 192, 80;
2, 35, 140, 469, 994, 1477, 1344, 579;
2, 48, 280, 1232, 3660, 7888, 11672, 10800, 4738;
2, 63, 504, 2856, 11268, 32958, 70152, 104256, 97434, 43387;
The polynomials start:
[0] 1;
[1] 2*x - 1;
[2] 2*x^2;
[3] 2*x^3 + 3*x^2 + 1;
[4] 2*x^4 + 8*x^3 + 4*x^2 + 8*x + 2;
[5] 2*x^5 + 15*x^4 + 20*x^3 + 40*x^2 + 30*x + 13.
MAPLE
U := proc(n) if n = 0 then return 1 fi;
add((2*n/(2*n-k))*binomial(2*n-k, k)*(n-k)!*(x-1)^k, k=0..n) end:
W := proc(r, s) coeff(U(r), x, s ) end:
T := (n, k) -> W(n, n-k): seq(seq(T(n, k), k=0..n), n=0..9);
MATHEMATICA
u[n_] := Sum[ 2*n/(2*n-k)*Binomial[2*n-k, k]*(n-k)!*(x-1)^k, {k, 0, n}]; w[r_, s_] := Coefficient[u[r], x, s]; a[n_, k_] := w[n, n-k]; a[0, 0]=1; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 10 2012, translated from Maple *)
T[n_, k_]:= If[n==0, 1, Sum[(-1)^j*(2*n*(k-j)!/(n+k-j))*Binomial[j+n-k, n - k]*Binomial[n+k-j, n-k+j], {j, 0, k}]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 15 2021 *)
PROG
(SageMath)
a = [[1]]
for n in range(1, 10):
g = expand(
sum((x - 1)^ k * (2*n) * binomial(2*n-k, k) * factorial(n-k) / (2*n-k)
for k in range(0, n + 1)
)
)
coeffs = g.coefficients(sparse=False)
coeffs.reverse()
a.append(coeffs) # William P. Orrick, Aug 12 2020
(Sage)
def A058087(n, k): return 1 if (n==0) else sum( (-1)^j*(2*n*factorial(k-j)/(n+k-j))*binomial(j+n-k, n-k)*binomial(n+k-j, n-k+j) for j in (0..k) )
flatten([[A058087(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 15 2021
(PARI) U(n, t)=sum(k=0, n, ((2*n/(2*n-k))*binomial(2*n-k, k)*(n-k)!*(t-1)^k));
print1(1, ", "); for(n=1, 9, forstep(k=n, 0, -1, print1(polcoef(U(n, 'x), k), ", "))) \\ Hugo Pfoertner, Aug 30 2020
CROSSREFS
Essentially a mirror image of A094314.
Sequence in context: A287411 A053796 A029391 * A240753 A202149 A236533
KEYWORD
sign,easy,tabl,nice
AUTHOR
N. J. A. Sloane, Dec 02 2000
EXTENSIONS
T(1,1) set to -1 to accord with Riordan by William P. Orrick, Aug 09 2020
STATUS
approved