login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094314
Triangle read by rows: T(n,k) = number of ways of seating n couples around a circular table so that exactly k married couples are adjacent (0 <= k <= n).
3
1, 0, 1, 0, 0, 2, 1, 0, 3, 2, 2, 8, 4, 8, 2, 13, 30, 40, 20, 15, 2, 80, 192, 210, 152, 60, 24, 2, 579, 1344, 1477, 994, 469, 140, 35, 2, 4738, 10800, 11672, 7888, 3660, 1232, 280, 48, 2, 43387, 97434, 104256, 70152, 32958, 11268, 2856, 504, 63, 2, 439792, 976000, 1036050, 695760, 328920, 115056, 30300, 6000, 840, 80, 2
OFFSET
0,6
COMMENTS
The men and women alternate.
REFERENCES
I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. See Table 1.
Tolman, L. Kirk, "Extensions of derangements", Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing, Humboldt State University, Arcata, California, September 5-7, 1979. Vol. 26. Utilitas Mathematica Pub., 1980. See Table I.
LINKS
I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. [Scan of annotated copy]
Anthony C. Robin, 90.72 Circular Wife Swapping, The Mathematical Gazette, Vol. 90, No. 519 (Nov., 2006), pp. 471-478.
L. Takacs, On the probleme des menages, Discr. Math. 36 (3) (1981) 289-297, Table 1.
FORMULA
Sum_{k=0..n} T(n,k) = n!.
T(n, k) = Sum_{j=0..n-k} (-1)^j*(2*n*(n-k-j)!/(2*n-k-j))*binomial(k+j, k) * binomial(2*n-k-j, k+j) for n > 1, T(0, 0) = T(1, 1) = 1, and T(1, 0) = 0. - G. C. Greubel, May 15 2021
EXAMPLE
Triangle begins:
1;
0, 1;
0, 0, 2;
1, 0, 3, 2;
2, 8, 4, 8, 2;
13, 30, 40, 20, 15, 2;
80, 192, 210, 152, 60, 24, 2;
579, 1344, 1477, 994, 469, 140, 35, 2;
4738, 10800, 11672, 7888, 3660, 1232, 280, 48, 2;
...
MATHEMATICA
T[n_, k_]:= If[n<2, (1+(-1)^(n-k))/2, Sum[(-1)^j*(2*n*(n-k-j)!/(2*n-k-j))* Binomial[k+j, k]*Binomial[2*n-k-j, k+j], {j, 0, n-k}]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 15 2021 *)
PROG
(Sage)
def A094314(n, k): return (1+(-1)^(n+k))/2 if (n<2) else sum( (-1)^j*(2*n*factorial(n-k-j)/(2*n-k-j))*binomial(k+j, k)*binomial(2*n-k-j, k+j) for j in (0..n-k) )
flatten([[A094314(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 15 2021
CROSSREFS
Essentially a mirror image of A058087, which has much more information.
Diagonals give A000179, A000425, A000033, A000159, A000181, etc.
Sequence in context: A333119 A356582 A320839 * A353632 A365713 A348328
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, based on a suggestion from Anthony C Robin, Jun 02 2004
STATUS
approved