login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000185
Coefficients of ménage hit polynomials.
(Formerly M2135 N0847)
2
2, 24, 140, 1232, 11268, 115056, 1284360, 15596208, 204710454, 2888897032, 43625578836, 702025263328, 11993721979336, 216822550325472, 4135337882588880, 82986434235959712, 1747976804189353962, 38559791049947726328, 889047923669760546140
OFFSET
5,1
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
Conjecture: +4*(210968408*n^2 -1603518486*n +2343057493) *a(n) +(-843873632*n^3 -4039256254*n^2 +144382575631*n -553812368850) *a(n-1) +(10453330198*n^3 -175111274403*n^2 +798927275864*n -639098546595) *a(n-2) +(10059264970*n^3 -98879552663*n^2 +170576803994*n -134993524720) *a(n-3) +(470894110*n^3 -5178116941*n^2 +108179055193*n -215961878286) *a(n-4) +(1708832970*n^3 -29554327949*n^2 +137453332457*n -152801514054) *a(n-5) +3*(569610990*n^2 -3742686463*n +4740040723) *a(n-6)=0. - R. J. Mathar, Nov 02 2015
Conjecture: (241*n-1066) *(2*n-11) *(-5+n)^2 *a(n) +(-482*n^5 +10099*n^4 -79756*n^3 +285961*n^2 -426904*n +149292) *a(n-1) -(2*n-9) *(n-3) *(248*n^3 -2229*n^2 +5065*n -7134) *a(n-2) +(-14*n^5 -49*n^4 -619*n^3 +13174*n^2 -51690*n +61248) *a(n-3) -(n-3) *(n-4) *(7*n-87) *(2*n-7) *a(n-4)= 0. - R. J. Mathar, Nov 02 2015
a(n)+2*a(n+p)+a(n+2*p) is divisible by p for any prime except 3 and 5. - Mark van Hoeij, Jun 13 2019
CROSSREFS
A diagonal of A058087. Cf. A000179, A000425.
Sequence in context: A261475 A078994 A290775 * A264566 A163752 A035600
KEYWORD
nonn
STATUS
approved