OFFSET
2,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 2..500
Richard P. Stanley, CATALAN ADDENDUM, version of Jul 19, 2008, p. 24. [From Jonathan Vos Post, Aug 16 2008]
M. S. Tokmachev, Correlations Between Elements and Sequences in a Numerical Prism, Bulletin of the South Ural State University, Ser. Mathematics. Mechanics. Physics, 2019, Vol. 11, No. 1, 24-33.
W. T. Tutte, On the enumeration of planar maps, Bull. Amer. Math. Soc. 74 1968 64-74.
T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218.
FORMULA
a(n) = 2 * A029887(n-2). - Ralf Stephan, Aug 17 2004
a(n) = 4^n*Gamma(n+3/2)/(3*sqrt(Pi)*Gamma(n)) - n*4^(n-1). - Mark van Hoeij, Jul 06 2010
From G. C. Greubel, Jul 18 2024: (Start)
a(n) = (n/12)*( (n+1)*(n+2)*Catalan(n+1) - 3*4^n ).
G.f.: x*(1 - sqrt(1 - 4*x))/(1-4*x)^(5/2).
E.g.f.: (x/3)*exp(2*x)*( - 3*exp(2*x) + 3*(1+2*x)*BesselI(0, 2*x) + (3+8*x)*BesselI(1, 2*x) + 2*x*BesselI(2, 2*x) ). (End)
MATHEMATICA
a[n_] := 1/12*(2^(n+1)*(2*n+1)!!/(n-1)!-3*4^n*n); Table[a[n], {n, 2, 31}] (* Jean-François Alcover, Mar 12 2014 *)
PROG
(Magma)
[n*((n+1)*(n+2)*Catalan(n+1) - 3*4^n)/12: n in [2..30]]; // G. C. Greubel, Jul 18 2024
(SageMath)
[n*(2*(2*n+1)*binomial(2*n, n) - 3*4^n)//12 for n in range(2, 30)] # G. C. Greubel, Jul 18 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, Nov 14 2010
STATUS
approved