login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A269920
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 0.
14
1, 1, 1, 2, 5, 2, 5, 22, 22, 5, 14, 93, 164, 93, 14, 42, 386, 1030, 1030, 386, 42, 132, 1586, 5868, 8885, 5868, 1586, 132, 429, 6476, 31388, 65954, 65954, 31388, 6476, 429, 1430, 26333, 160648, 442610, 614404, 442610, 160648, 26333, 1430
OFFSET
0,4
COMMENTS
Row n contains n+1 terms.
LINKS
Gheorghe Coserea, Rows n = 0..200, flattened
Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
EXAMPLE
Triangle starts:
n\f [1] [2] [3] [4] [5] [6] [7] [8]
[0] 1;
[1] 1, 1;
[2] 2, 5, 2;
[3] 5, 22, 22, 5;
[4] 14, 93, 164, 93, 14;
[5] 42, 386, 1030, 1030, 386, 42;
[6] 132, 1586, 5868, 8885, 5868, 1586, 132;
[7] 429, 6476, 31388, 65954, 65954, 31388, 6476, 429;
[8] ...
MATHEMATICA
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 0], {n, 0, 8}, {f, 1, n+1}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
PROG
(PARI)
N = 8; G = 0; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
CROSSREFS
Columns k=1-6 give: A000108, A000346, A000184, A000365, A000473, A000502.
Row sums give A000168 (column 0 of A269919).
Cf. A006294 (row maxima).
Sequence in context: A089122 A321577 A268789 * A240706 A240642 A240774
KEYWORD
nonn,tabl
AUTHOR
Gheorghe Coserea, Mar 14 2016
STATUS
approved