login
A000365
Number of genus 0 rooted planar maps with 4 faces and n vertices.
(Formerly M4022 N1669)
3
5, 93, 1030, 8885, 65954, 442610, 2762412, 16322085, 92400330, 505403910, 2687477780, 13957496098, 71053094420, 355548314180, 1752827693528, 8529176056965, 41026491589722, 195327793313790, 921451498774660, 4311086414580022, 20019238138410940
OFFSET
3,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
LINKS
W. T. Tutte, On the enumeration of planar maps, Bull. Amer. Math. Soc. 74 1968 64-74.
T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218.
FORMULA
G.f.: x^2*(1-sqrt(1-4*x))*(7+4*x-2*sqrt(1-4*x))/(2*(4*x-1)^4). - corrected for right offset by Vaclav Kotesovec, Aug 13 2013
a(n) ~ n^3*4^n/24 * (1-4/(sqrt(Pi*n))). - Vaclav Kotesovec, Aug 13 2013
MATHEMATICA
nn = 20; CoefficientList[Series[x^2 (1 - Sqrt[1 - 4 x]) (7 + 4 x - 2 Sqrt[1 - 4 x])/(2 (4 x - 1)^4), {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *)
PROG
(PARI) seq(n)={my(g=sqrt(1-4*x + O(x*x^n))); Vec((1-g)*(7+4*x-2*g)/(2*(1-4*x)^4))} \\ Andrew Howroyd, Mar 27 2021
CROSSREFS
Column 4 of A269920.
Column 0 of A270408.
Sequence in context: A152283 A205344 A270408 * A209471 A012784 A136097
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Nov 14 2010
STATUS
approved