|
|
A000363
|
|
Number of permutations of [n] with exactly 2 increasing runs of length at least 2.
(Formerly M4018 N1666)
|
|
4
|
|
|
5, 61, 479, 3111, 18270, 101166, 540242, 2819266, 14494859, 73802835, 373398489, 1881341265, 9453340172, 47417364268, 237571096820, 1189405165908, 5951965440609, 29775517732665, 148927275340835, 744793282001995
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
4,1
|
|
REFERENCES
|
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 4..1000
Index entries for linear recurrences with constant coefficients, signature (14,-75,196,-263,174,-45).
|
|
FORMULA
|
a(n) = (5^n-(2*n-1)*3^n+2*n^2-2*n-2)/16. - Vaclav Kotesovec, Nov 19 2012
G.f.: -x^4*(9*x-5)/((x-1)^3*(3*x-1)^2*(5*x-1)). - Vaclav Kotesovec, Nov 19 2012
|
|
MATHEMATICA
|
Table[(5^n-(2*n-1)*3^n+2*n^2-2*n-2)/16, {n, 4, 20}] (* Vaclav Kotesovec, Nov 19 2012 *)
|
|
PROG
|
(Magma) [(5^n-(2*n-1)*3^n+2*n^2-2*n-2)/16: n in [4..30]]; // Vincenzo Librandi, May 03 2013
|
|
CROSSREFS
|
Contribution from Johannes W. Meijer, May 24 2009: (Start)
The a(n) sequence equals the third left hand column of A008971.
The a(2*n) sequence equals the third left hand column of A160486.
(End)
Sequence in context: A060060 A183379 A345649 * A200956 A203358 A099666
Adjacent sequences: A000360 A000361 A000362 * A000364 A000365 A000366
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms and better definition from Jon E. Schoenfield, Mar 25 2010
|
|
STATUS
|
approved
|
|
|
|