login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060060
Third column of triangle A060058.
4
5, 61, 331, 1211, 3486, 8526, 18522, 36762, 67947, 118547, 197197, 315133, 486668, 729708, 1066308, 1523268, 2132769, 2933049, 3969119, 5293519, 6967114, 9059930, 11652030, 14834430, 18710055, 23394735
OFFSET
0,1
LINKS
FORMULA
a(n) = A060058(n+2, 2) = binomial(n+4, 4)*(20*n^2+88*n+75)/(3*5).
G.f.: (5+26*x+9*x^2)/(1-x)^7 = p(2, x)/(1-x)^(2*3+1). p(2, x)=sum(A060063(2, m)*x^m, m=0..2).
EXAMPLE
a(3) = binomial(7,4) * (20 * 3^2 + 88*3 +75) / 15 = (35 * 519)/15 = 1211. - Indranil Ghosh, Feb 21 2017
MATHEMATICA
Table[(Binomial[n+4, 4]*(20*n^2+88*n+75)/15), {n, 0, 25}] (* Indranil Ghosh, Feb 21 2017 *)
PROG
(Python)
import math
def C(n, r):
f=math.factorial
return f(n)//f(r)//f(n-r)
def A060060(n):
return C(n+4, 4)*(20*n**2+88*n+75)//15 # Indranil Ghosh, Feb 21 2017
CROSSREFS
Sequence in context: A196214 A196681 A281713 * A183379 A345649 A000363
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 16 2001
STATUS
approved