login
A060060
Third column of triangle A060058.
4
5, 61, 331, 1211, 3486, 8526, 18522, 36762, 67947, 118547, 197197, 315133, 486668, 729708, 1066308, 1523268, 2132769, 2933049, 3969119, 5293519, 6967114, 9059930, 11652030, 14834430, 18710055, 23394735
OFFSET
0,1
LINKS
FORMULA
a(n) = A060058(n+2, 2) = binomial(n+4, 4)*(20*n^2+88*n+75)/(3*5).
G.f.: (5+26*x+9*x^2)/(1-x)^7 = p(2, x)/(1-x)^(2*3+1). p(2, x)=sum(A060063(2, m)*x^m, m=0..2).
EXAMPLE
a(3) = binomial(7,4) * (20 * 3^2 + 88*3 +75) / 15 = (35 * 519)/15 = 1211. - Indranil Ghosh, Feb 21 2017
MATHEMATICA
Table[(Binomial[n+4, 4]*(20*n^2+88*n+75)/15), {n, 0, 25}] (* Indranil Ghosh, Feb 21 2017 *)
PROG
(Python)
import math
def C(n, r):
....f=math.factorial
....return f(n)/f(r)/f(n-r)
def A060060(n):
....return C(n+4, 4)*(20*n**2+88*n+75)/15 # Indranil Ghosh, Feb 21 2017
CROSSREFS
Sequence in context: A196214 A196681 A281713 * A183379 A345649 A000363
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 16 2001
STATUS
approved