login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060061
Fourth column of triangle A060058.
6
61, 1385, 12284, 68060, 281210, 948002, 2749340, 7097948, 16700255, 36419955, 74551048, 144631240, 267951892, 476948260, 819683560, 1365672424, 2213323585, 3499318141, 5410278500, 8197124100
OFFSET
0,1
LINKS
FORMULA
a(n) = Sum_{j3=1..n+1} j3^2*Sum_{j2=1..j3+1} j2^2*Sum_{j1=1..j2+1} j1^2.
a(n) = A060058(n+3, 3) = binomial(n+6, 6)*(280*n^3+2436*n^2+5906*n+3843)/(7*9).
G.f.: (61+775*x+1179*x^2+225*x^3)/(1-x)^10 = p(3, x)/(1-x)^(3*3+1) with p(3, x)=sum(A060063(3, m)*x^m, m=0..3).
MATHEMATICA
Table[Binomial[n+6, 6]*(280*n^3+2436*n^2+5906n+3843)/63, {n, 0, 19}] (* Indranil Ghosh, Feb 21 2017 *)
PROG
(Python)
import math
def C(n, r):
f=math.factorial
return f(n)//f(r)//f(n-r)
def A060061(n):
return (C(n+6, 6)*(280*n**3+2436*n**2+5906*n+3843))//63 # Indranil Ghosh, Feb 21 2017
CROSSREFS
Sequence in context: A218112 A154428 A262017 * A000507 A350974 A143011
KEYWORD
nonn,easy,changed
AUTHOR
Wolfdieter Lang, Mar 16 2001
STATUS
approved