login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218112
Number of transitive reflexive early confluent binary relations R on n+2 labeled elements with max_{x}(|{y : xRy}|) = n.
2
0, 1, 61, 1105, 16025, 239379, 3794378, 64432638, 1173919350, 22913136730, 477859512889, 10616510910603, 250501631648359, 6259150585043685, 165157651772590340, 4590337237739801932, 134066099253229461636, 4105495811166963962292, 131552972087266209052875
OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..200 (terms n=23..100 from Vincenzo Librandi)
FORMULA
a(n) = A135313(n+2,n).
a(n) ~ n! * n^4 / (16 * log(2)^(n+3)). - Vaclav Kotesovec, Nov 20 2021
MAPLE
t:= proc(k) option remember; `if`(k<0, 0, unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x)) end: tt:= proc(k) option remember; unapply((t(k)-t(k-1))(x), x) end: T:= proc(n, k) option remember; coeff(series(tt(k)(x), x, n+1), x, n) *n! end:
a:= n-> T(n+2, n): seq(a(n), n=0..20);
MATHEMATICA
t[k_] := t[k] = If[k < 0, 0&, Function[x, Evaluate @ Normal[Series[Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]], {x, 0, k+3}]]]]; tt[k_] := tt[k] = Function[x, (t[k][x]-t[k-1][x]) // Evaluate]; T[n_, k_] := T[n, k] = Coefficient[Series[tt[k][x], {x, 0, n+1}], x, n]*n!; a[n_] := a[n] = T[n+2, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 17 2014, after Maple *)
CROSSREFS
Sequence in context: A138790 A057534 A152868 * A154428 A262017 A060061
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2012
STATUS
approved