The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218115 G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^5 * y^k] * x^n/n ) = Sum_{n>=0,k=0..n} T(n,k)*x^n*y^k, as a triangle of coefficients T(n,k) read by rows. 4
 1, 1, 1, 1, 17, 1, 1, 98, 98, 1, 1, 354, 2251, 354, 1, 1, 979, 23803, 23803, 979, 1, 1, 2275, 158367, 617036, 158367, 2275, 1, 1, 4676, 773842, 8763293, 8763293, 773842, 4676, 1, 1, 8772, 3031668, 82498785, 241082026, 82498785, 3031668, 8772, 1, 1, 15333 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Compare g.f. to that of the following triangle variants: * Pascal's: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)*y^k] * x^n/n ); * Narayana: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n ); * A181143: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3*y^k] * x^n/n ); * A181144: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^4*y^k] * x^n/n ); * A218116: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^6*y^k] * x^n/n ). LINKS EXAMPLE G.f.: A(x,y) = 1 + (1+y)*x + (1+17*y+y^2)*x^2 + (1+98*y+98*y^2+y^3)*x^3 + (1+354*y+2251*y^2+354*y^3+y^4)*x^4 +... The logarithm of the g.f. equals the series: log(A(x,y)) = (1 + y)*x + (1 + 2^5*y + y^2)*x^2/2 + (1 + 3^5*y + 3^5*y^2 + y^3)*x^3/3 + (1 + 4^5*y + 6^5*y^2 + 4^5*y^3 + y^4)*x^4/4 + (1 + 5^5*y + 10^5*y^2 + 10^5*y^3 + 5^5*y^4 + y^5)*x^5/5 +... Triangle begins: 1; 1, 1; 1, 17, 1; 1, 98, 98, 1; 1, 354, 2251, 354, 1; 1, 979, 23803, 23803, 979, 1; 1, 2275, 158367, 617036, 158367, 2275, 1; 1, 4676, 773842, 8763293, 8763293, 773842, 4676, 1; 1, 8772, 3031668, 82498785, 241082026, 82498785, 3031668, 8772, 1; 1, 15333, 10057620, 575963523, 4066874561, 4066874561, 575963523, 10057620, 15333, 1; ... Note that column 1 forms the sum of fourth powers (A000538). PROG (PARI) {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^5*y^j)*x^m/m)+O(x^(n+1))), n, x), k, y)} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) CROSSREFS Cf. A000538 (column 1), A218117 (row sums). Cf. variants: A001263 (Narayana), A181143, A181144, A218116. Sequence in context: A103637 A229956 A157274 * A144442 A157151 A176794 Adjacent sequences:  A218112 A218113 A218114 * A218116 A218117 A218118 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Oct 21 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 12:01 EDT 2020. Contains 337380 sequences. (Running on oeis4.)