login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176794
Triangle read by rows: T(n, k) = 2^n*(q^k - 1)*(q^(n - k) - 1) + 1, where q = 3.
3
1, 1, 1, 1, 17, 1, 1, 129, 129, 1, 1, 833, 1025, 833, 1, 1, 5121, 6657, 6657, 5121, 1, 1, 30977, 40961, 43265, 40961, 30977, 1, 1, 186369, 247809, 266241, 266241, 247809, 186369, 1, 1, 1119233, 1490945, 1610753, 1638401, 1610753, 1490945, 1119233, 1
OFFSET
0,5
FORMULA
T(n, k) = 1 - (f(n+1, 2*k+1, q) - f(n+1, 1, q)) - (f(n+1, 2*n-2*k+1, q) - f(n+1, 2*n+1, q)), where f(n, k, q) = 2^(n-1) * q^((k-1)/2), and q = 3.
From G. C. Greubel, Oct 02 2024: (Start)
T(n, k) = 2^n*(3^k - 1)*(3^(n-k) - 1) + 1.
T(2*n, n) = 1 + 4^n*(3^n - 1)^2 = 1 + 16*A144843(n).
Sum_{k=0..n} T(n, k) = 2^n*(n + 2 + (n-2)*3^n) + (n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/4)*(1 + (-1)^n)*(2 + 2^n - 6^n). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 17, 1;
1, 129, 129, 1;
1, 833, 1025, 833, 1;
1, 5121, 6657, 6657, 5121, 1;
1, 30977, 40961, 43265, 40961, 30977, 1;
1, 186369, 247809, 266241, 266241, 247809, 186369, 1;
1, 1119233, 1490945, 1610753, 1638401, 1610753, 1490945, 1119233, 1;
MATHEMATICA
T[n_, k_, q_] := 2^n*(q^k - 1)*(q^(n - k) - 1) + 1;
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma)
f:= func< n, k, q | 1 + (q^k-1)*(q^(n-k)-1)*2^n >;
A176794:= func< n, k | f(n, k, 3) >;
[A176794(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Oct 03 2024
(SageMath)
def f(n, k, q): return 1 + (q^k -1)*(q^(n-k) -1)*2^n
def A176794(n, k): return f(n, k, 3)
flatten([[A176794(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Oct 03 2024
CROSSREFS
Cf. A000012 (q=1), A176793 (q=2), this sequence (q=3), A176795 (q=4).
Cf. A144843.
Sequence in context: A218115 A144442 A157151 * A176244 A022180 A156581
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 26 2010
EXTENSIONS
Edited by G. C. Greubel, Oct 03 2024
STATUS
approved