The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176244 Triangle generated by T(n,k) = q^k*T(n-1, k) + T(n-1, k-1), with q=4. 3
 1, 1, 1, 1, 17, 1, 1, 273, 81, 1, 1, 4369, 5457, 337, 1, 1, 69905, 353617, 91729, 1361, 1, 1, 1118481, 22701393, 23836241, 1485393, 5457, 1, 1, 17895697, 1454007633, 6124779089, 1544878673, 23837265, 21841, 1, 1, 286331153, 93074384209, 1569397454417, 1588080540241, 99182316113, 381680209, 87377, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums are: {1, 2, 19, 356, 10165, 516614, 49146967, 9165420200, 3350402793721, 2449781908163402, ...}. REFERENCES Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 176 LINKS G. C. Greubel, Rows n = 1..75 of triangle, flattened FORMULA T(n,k) = T(n-1, k-1) + q^k*T(n-1, k), with q=4. EXAMPLE Triangle starts as:   1;   1,        1;   1,       17,          1;   1,      273,         81,          1;   1,     4369,       5457,        337,          1;   1,    69905,     353617,      91729,       1361,        1;   1,  1118481,   22701393,   23836241,    1485393,     5457,     1;   1, 17895697, 1454007633, 6124779089, 1544878673, 23837265, 21841, 1; MAPLE T:= proc(n, k) option remember;     q:=4;       if k=1 or k=n then 1     else T(n-1, k-1) + q^k*T(n-1, k)       fi; end: seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 22 2019 MATHEMATICA q:=4; T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, q^k*T[n-1, k] + T[n-1, k-1]]; Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Nov 22 2019 *) PROG (PARI) T(n, k) = my(q=4); if(k==1 || k==n, 1, q^k*T(n-1, k) + T(n-1, k-1)); \\ G. C. Greubel, Nov 22 2019 (MAGMA) function T(n, k)   q:=4;   if k eq 1 or k eq n then return 1;   else return T(n-1, k-1) + q^k*T(n-1, k);   end if; return T; end function; [T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 22 2019 (Sage) @CachedFunction def T(n, k):     q=4;     if (k==1 or k==n): return 1     else: return q^k*T(n-1, k) + T(n-1, k-1) [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 22 2019 CROSSREFS Cf. A176242 (q=2), A176243 (q=3), this sequence (q=4). Sequence in context: A144442 A157151 A176794 * A022180 A156581 A015143 Adjacent sequences:  A176241 A176242 A176243 * A176245 A176246 A176247 KEYWORD nonn,tabl AUTHOR Roger L. Bagula, Apr 12 2010 EXTENSIONS Edited by G. C. Greubel, Nov 22 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 16:40 EDT 2020. Contains 337393 sequences. (Running on oeis4.)