login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176244
Triangle generated by T(n,k) = q^k*T(n-1, k) + T(n-1, k-1), with q=4.
3
1, 1, 1, 1, 17, 1, 1, 273, 81, 1, 1, 4369, 5457, 337, 1, 1, 69905, 353617, 91729, 1361, 1, 1, 1118481, 22701393, 23836241, 1485393, 5457, 1, 1, 17895697, 1454007633, 6124779089, 1544878673, 23837265, 21841, 1, 1, 286331153, 93074384209, 1569397454417, 1588080540241, 99182316113, 381680209, 87377, 1
OFFSET
1,5
COMMENTS
Row sums are: {1, 2, 19, 356, 10165, 516614, 49146967, 9165420200, 3350402793721, 2449781908163402, ...}.
REFERENCES
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 176
FORMULA
T(n,k) = T(n-1, k-1) + q^k*T(n-1, k), with q=4.
EXAMPLE
Triangle starts as:
1;
1, 1;
1, 17, 1;
1, 273, 81, 1;
1, 4369, 5457, 337, 1;
1, 69905, 353617, 91729, 1361, 1;
1, 1118481, 22701393, 23836241, 1485393, 5457, 1;
1, 17895697, 1454007633, 6124779089, 1544878673, 23837265, 21841, 1;
MAPLE
T:= proc(n, k) option remember;
q:=4;
if k=1 or k=n then 1
else T(n-1, k-1) + q^k*T(n-1, k)
fi; end:
seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 22 2019
MATHEMATICA
q:=4; T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, q^k*T[n-1, k] + T[n-1, k-1]];
Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Nov 22 2019 *)
PROG
(PARI) T(n, k) = my(q=4); if(k==1 || k==n, 1, q^k*T(n-1, k) + T(n-1, k-1)); \\ G. C. Greubel, Nov 22 2019
(Magma)
function T(n, k)
q:=4;
if k eq 1 or k eq n then return 1;
else return T(n-1, k-1) + q^k*T(n-1, k);
end if; return T; end function;
[T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 22 2019
(Sage)
@CachedFunction
def T(n, k):
q=4;
if (k==1 or k==n): return 1
else: return q^k*T(n-1, k) + T(n-1, k-1)
[[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 22 2019
CROSSREFS
Cf. A176242 (q=2), A176243 (q=3), this sequence (q=4).
Sequence in context: A144442 A157151 A176794 * A022180 A156581 A015143
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 12 2010
EXTENSIONS
Edited by G. C. Greubel, Nov 22 2019
STATUS
approved