Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 08 2022 08:45:52
%S 1,1,1,1,17,1,1,273,81,1,1,4369,5457,337,1,1,69905,353617,91729,1361,
%T 1,1,1118481,22701393,23836241,1485393,5457,1,1,17895697,1454007633,
%U 6124779089,1544878673,23837265,21841,1,1,286331153,93074384209,1569397454417,1588080540241,99182316113,381680209,87377,1
%N Triangle generated by T(n,k) = q^k*T(n-1, k) + T(n-1, k-1), with q=4.
%C Row sums are: {1, 2, 19, 356, 10165, 516614, 49146967, 9165420200, 3350402793721, 2449781908163402, ...}.
%D Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 176
%H G. C. Greubel, <a href="/A176244/b176244.txt">Rows n = 1..75 of triangle, flattened</a>
%F T(n,k) = T(n-1, k-1) + q^k*T(n-1, k), with q=4.
%e Triangle starts as:
%e 1;
%e 1, 1;
%e 1, 17, 1;
%e 1, 273, 81, 1;
%e 1, 4369, 5457, 337, 1;
%e 1, 69905, 353617, 91729, 1361, 1;
%e 1, 1118481, 22701393, 23836241, 1485393, 5457, 1;
%e 1, 17895697, 1454007633, 6124779089, 1544878673, 23837265, 21841, 1;
%p T:= proc(n, k) option remember;
%p q:=4;
%p if k=1 or k=n then 1
%p else T(n-1, k-1) + q^k*T(n-1, k)
%p fi; end:
%p seq(seq(T(n, k), k=1..n), n=1..12); # _G. C. Greubel_, Nov 22 2019
%t q:=4; T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, q^k*T[n-1, k] + T[n-1, k-1]];
%t Table[T[n, k], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Nov 22 2019 *)
%o (PARI) T(n,k) = my(q=4); if(k==1 || k==n, 1, q^k*T(n-1,k) + T(n-1,k-1)); \\ _G. C. Greubel_, Nov 22 2019
%o (Magma)
%o function T(n,k)
%o q:=4;
%o if k eq 1 or k eq n then return 1;
%o else return T(n-1,k-1) + q^k*T(n-1,k);
%o end if; return T; end function;
%o [T(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Nov 22 2019
%o (Sage)
%o @CachedFunction
%o def T(n, k):
%o q=4;
%o if (k==1 or k==n): return 1
%o else: return q^k*T(n-1, k) + T(n-1, k-1)
%o [[T(n, k) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Nov 22 2019
%Y Cf. A176242 (q=2), A176243 (q=3), this sequence (q=4).
%K nonn,tabl
%O 1,5
%A _Roger L. Bagula_, Apr 12 2010
%E Edited by _G. C. Greubel_, Nov 22 2019