login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022180
Triangle of Gaussian binomial coefficients [ n,k ] for q = 16.
17
1, 1, 1, 1, 17, 1, 1, 273, 273, 1, 1, 4369, 70161, 4369, 1, 1, 69905, 17965585, 17965585, 69905, 1, 1, 1118481, 4599259665, 73605001745, 4599259665, 1118481, 1, 1, 17895697, 1177411592721, 301490686407185, 301490686407185
OFFSET
0,5
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=16. - G. C. Greubel, May 28 2018
MATHEMATICA
Table[QBinomial[n, k, 16], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 16; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 28 2018 *)
PROG
(PARI) {q=16; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 28 2018
CROSSREFS
Row sums give A015204.
Sequence in context: A157151 A176794 A176244 * A156581 A015143 A172196
KEYWORD
nonn,tabl
STATUS
approved