login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022177 Triangle of Gaussian binomial coefficients [ n,k ] for q = 13. 16
1, 1, 1, 1, 14, 1, 1, 183, 183, 1, 1, 2380, 31110, 2380, 1, 1, 30941, 5259970, 5259970, 30941, 1, 1, 402234, 888965871, 11561414060, 888965871, 402234, 1, 1, 5229043, 150235634433, 25401315655691, 25401315655691 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

LINKS

G. C. Greubel, Rows n=0..50 of triangle, flattened

Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

FORMULA

T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=13. - G. C. Greubel, May 28 2018

MATHEMATICA

Table[QBinomial[n, k, 13], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 13; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 28 2018 *)

PROG

(PARI) {q=13; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};

for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 28 2018

CROSSREFS

Row sums give A015201.

Sequence in context: A142461 A174720 A060628 * A015133 A040202 A209601

Adjacent sequences:  A022174 A022175 A022176 * A022178 A022179 A022180

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)