login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A040202 Continued fraction for sqrt(217). 0
14, 1, 2, 1, 2, 1, 1, 9, 4, 9, 1, 1, 2, 1, 2, 1, 28, 1, 2, 1, 2, 1, 1, 9, 4, 9, 1, 1, 2, 1, 2, 1, 28, 1, 2, 1, 2, 1, 1, 9, 4, 9, 1, 1, 2, 1, 2, 1, 28, 1, 2, 1, 2, 1, 1, 9, 4, 9, 1, 1, 2, 1, 2, 1, 28, 1, 2, 1, 2, 1, 1, 9, 4, 9, 1, 1, 2, 1, 2, 1, 28, 1, 2, 1, 2, 1, 1, 9, 4, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..89.

Index entries for continued fractions for constants

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

FORMULA

a(n)=(1/320)*{-529*(n mod 16)+31*[(n+1) mod 16]-9*[(n+2) mod 16]+31*[(n+3) mod 16]-9*[(n+4) mod 16]+11*[(n+5) mod 16]+171*[(n+6) mod 16]-89*[(n+7) mod 16]+111*[(n+8) mod 16]-149*[(n+9) mod 16]+11*[(n+10) mod 16]+31*[(n+11) mod 16]-9*[(n+12) mod 16]+31*[(n+13) mod 16]-9*[(n+14) mod 16]+551*[(n+15) mod 16]}-14*[C(2*n,n) mod 2], with n>=0 [From Paolo P. Lava, Apr 23 2009]

MAPLE

with(numtheory): Digits := 300: convert(evalf(sqrt(217)), confrac);

CROSSREFS

Sequence in context: A060628 A022177 A015133 * A209601 A040201 A179948

Adjacent sequences:  A040199 A040200 A040201 * A040203 A040204 A040205

KEYWORD

nonn,cofr,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)