login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022178 Triangle of Gaussian binomial coefficients [ n,k ] for q = 14. 16
1, 1, 1, 1, 15, 1, 1, 211, 211, 1, 1, 2955, 41567, 2955, 1, 1, 41371, 8150087, 8150087, 41371, 1, 1, 579195, 1597458423, 22371988815, 1597458423, 579195, 1, 1, 8108731, 313102430103, 61390334766783, 61390334766783 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

LINKS

G. C. Greubel, Rows n=0..50 of triangle, flattend

Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

FORMULA

T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=14. - G. C. Greubel, May 28 2018

MATHEMATICA

Table[QBinomial[n, k, 14], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 14; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 28 2018 *)

PROG

(PARI) {q=14; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};

for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 28 2018

CROSSREFS

Sequence in context: A156939 A174187 A174693 * A176639 A015139 A040231

Adjacent sequences:  A022175 A022176 A022177 * A022179 A022180 A022181

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 19:51 EST 2019. Contains 329879 sequences. (Running on oeis4.)