login
A340430
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = 4^(2*n*k) * Product_{a=1..n} Product_{b=1..k} (1 - cos(a*Pi/(2*n+1))^2 * cos(b*Pi/(2*k+1))^2).
3
1, 1, 1, 1, 15, 1, 1, 209, 209, 1, 1, 2911, 32625, 2911, 1, 1, 40545, 5015009, 5015009, 40545, 1, 1, 564719, 770100001, 8238791743, 770100001, 564719, 1, 1, 7865521, 118247646001, 13441754883649, 13441754883649, 118247646001, 7865521, 1
OFFSET
0,5
FORMULA
T(n,k) = T(k,n).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
1, 15, 209, 2911, 40545, ...
1, 209, 32625, 5015009, 770100001, ...
1, 2911, 5015009, 8238791743, 13441754883649, ...
1, 40545, 770100001, 13441754883649, 230629380093001665, ...
PROG
(PARI) default(realprecision, 120);
{T(n, k) = round(4^(2*n*k)*prod(a=1, n, prod(b=1, k, 1-(cos(a*Pi/(2*n+1))*cos(b*Pi/(2*k+1)))^2)))}
CROSSREFS
Main diagonal gives A340291.
Sequence in context: A156939 A174187 A174693 * A022178 A176639 A015139
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jan 07 2021
STATUS
approved