login
A340428
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = 4^(2*n*k) * Product_{a=1..n} Product_{b=1..k} (1 - sin(a*Pi/(2*n+1))^2 * sin(b*Pi/(2*k+1))^2).
3
1, 1, 1, 1, 7, 1, 1, 61, 61, 1, 1, 547, 4961, 547, 1, 1, 4921, 432461, 432461, 4921, 1, 1, 44287, 38484961, 371647151, 38484961, 44287, 1, 1, 398581, 3445022461, 330435708793, 330435708793, 3445022461, 398581, 1
OFFSET
0,5
FORMULA
T(n,k) = T(k,n).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
1, 7, 61, 547, 4921, ...
1, 61, 4961, 432461, 38484961, ...
1, 547, 432461, 371647151, 330435708793, ...
1, 4921, 38484961, 330435708793, 2952717950351617, ...
PROG
(PARI) default(realprecision, 120);
{T(n, k) = round(4^(2*n*k)*prod(a=1, n, prod(b=1, k, 1-(sin(a*Pi/(2*n+1))*sin(b*Pi/(2*k+1)))^2)))}
CROSSREFS
Main diagonal gives A340292.
Sequence in context: A174719 A176392 A015118 * A174691 A156692 A188644
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jan 07 2021
STATUS
approved