login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340292
a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - sin(j*Pi/(2*n+1))^2 * sin(k*Pi/(2*n+1))^2).
4
1, 7, 4961, 371647151, 2952717950351617, 2489597262406609716450871, 222812636926792555435326125877303201, 2116840405025957772469476908228785308996001314527, 2134958300495920487325052422663717579194357002081033470045923329
OFFSET
0,2
FORMULA
a(n) = A002315(n) * A340293(n)^2.
a(n) ~ exp(2*G*(2*n+1)^2/Pi) / 2^(4*n + 3/4), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 04 2021
MATHEMATICA
Table[2^(4*n^2) * Product[Product[1 - Sin[j*Pi/(2*n + 1)]^2 * Sin[k*Pi/(2*n + 1)]^2, {k, 1, n}], {j, 1, n}], {n, 0, 10}] // Round (* Vaclav Kotesovec, Jan 04 2021 *)
PROG
(PARI) default(realprecision, 120);
{a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(sin(j*Pi/(2*n+1))*sin(k*Pi/(2*n+1)))^2)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 03 2021
STATUS
approved