login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095155
Number of 6-block covers of a labeled n-set.
2
7, 4977, 711326, 63602770, 4709047749, 320401872035, 20951777849212, 1344192783541860, 85442420316605891, 5406486257577661333, 341342273242841583258, 21527330224106110255670, 1356927944579525164818433, 85508356311211819638169671, 5387705299223777670172444664
OFFSET
3,1
LINKS
FORMULA
a(n) = (1/6!)*(-1764+1624*3^n-735*7^n+175*15^n-21*31^n+63^n).
G.f.: 7*x^3*(87885*x^3+20891*x^2+591*x+1) / ((x-1)*(3*x-1)*(7*x-1)*(15*x-1)*(31*x-1)*(63*x-1)). - Colin Barker, Jul 12 2013
a(n) = sum(i=0..n, (-1)^i * C(n,i) * C(2^(n-i)-1,6) ). - Geoffrey Critzer, Aug 24 2014
a(n) = 120*a(n-1)-4593(n-2)+69688*a(n-3)-428787*a(n-4)+978768*a(n-5)-615195*a(n-6). - Wesley Ivan Hurt, Aug 26 2014
MAPLE
A095155:=n->(-1764+1624*3^n-735*7^n+175*15^n-21*31^n+63^n)/720: seq(A095155(n), n=3..20); # Wesley Ivan Hurt, Aug 26 2014
MATHEMATICA
nn = 19; Table[ Sum[(-1)^i Binomial[n, i] Binomial[2^(n - i) - 1, 6], {i, 0, n}], {n, 3, nn}] (* Geoffrey Critzer, Aug 24 2014 *)
Table[(-1764 + 1624*3^n - 735*7^n + 175*15^n - 21*31^n + 63^n)/720, {n, 3, 20}] (* Wesley Ivan Hurt, Aug 26 2014 *)
PROG
(Magma) [(-1764+1624*3^n-735*7^n+175*15^n-21*31^n+63^n)/720 : n in [3..20]]; // Wesley Ivan Hurt, Aug 26 2014
CROSSREFS
Column of A055154.
Sequence in context: A103856 A364640 A340292 * A219893 A243780 A246519
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, May 31 2004
EXTENSIONS
More terms from Colin Barker, Jul 12 2013
STATUS
approved