|
|
A095154
|
|
Number of 5-block covers of a labeled n-set.
|
|
1
|
|
|
21, 2919, 155106, 6054006, 208493607, 6791135085, 215553311652, 6758354401932, 210657488261913, 6547648042583571, 203236346721890118, 6304217491485837378, 195489116558570607339, 6061038320388658194777, 187905324183802270088904, 5825262097993829801550744
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,1
|
|
LINKS
|
Table of n, a(n) for n=3..18.
Index entries for linear recurrences with constant coefficients, signature (57,-1002,6562,-15381,9765).
|
|
FORMULA
|
a(n) = (1/5!)*(274-225*3^n+85*7^n-15*15^n+31^n).
G.f.: -21*x^3*(465*x^2+82*x+1) / ((x-1)*(3*x-1)*(7*x-1)*(15*x-1)*(31*x-1)). - Colin Barker, Jul 13 2013
a(n) = sum(i=0..n, (-1)^i * C(n,i) * C(2^(n-i)-1,5) ). - Geoffrey Critzer, Aug 24 2014
a(n) = 57*a(n-1)-1002*a(n-2)+6562*a(n-3)-15381*a(n-4)+9765*a(n-5). - Wesley Ivan Hurt, Aug 25 2014
|
|
MAPLE
|
A095154:=n->(274-225*3^n+85*7^n-15*15^n+31^n)/120: seq(A095154(n), n=3..20); # Wesley Ivan Hurt, Aug 25 2014
|
|
MATHEMATICA
|
nn = 19; Table[Sum[(-1)^i Binomial[n, i] Binomial[2^(n - i) - 1, 5], {i, 0, n}], {n, 3, nn}] (* Geoffrey Critzer, Aug 24 2014 *)
Table[(274 - 225*3^n + 85*7^n - 15*15^n + 31^n)/120, {n, 3, 20}] (* Wesley Ivan Hurt, Aug 25 2014 *)
|
|
PROG
|
(Magma) [(274-225*3^n+85*7^n-15*15^n+31^n)/120 : n in [3..20]]; // Wesley Ivan Hurt, Aug 25 2014
|
|
CROSSREFS
|
Column of A055154.
Sequence in context: A114934 A098375 A202793 * A220999 A231825 A347604
Adjacent sequences: A095151 A095152 A095153 * A095155 A095156 A095157
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Vladeta Jovovic, May 31 2004
|
|
EXTENSIONS
|
More terms from Colin Barker, Jul 13 2013
|
|
STATUS
|
approved
|
|
|
|