login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114934
Number of connected (5,n)-hypergraphs (without empty edges and without multiple edges).
4
0, 0, 0, 21, 2773, 148365, 5878391, 204819447, 6721694469, 214306917321, 6736603947907, 210284186632443, 6541309609120385, 203129541349695597, 6302428271530970943, 195459285517696665759, 6060542952694406463421
OFFSET
0,4
LINKS
Goran Kilibarda and Vladeta Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
FORMULA
E.g.f.: (1/5!)*(exp(31*x) - 5*exp(16*x) - 10*exp(15*x) - 10*exp(10*x) + 20*exp(9*x) + 40*exp(8*x) + 65*exp(7*x) - 30*exp(6*x) - 96*exp(5*x) - 45*exp(4*x) + 20*exp(3*x) + 50*exp(2*x) + 24*exp(x) - 24).
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[(1/5!)*(Exp[31*x] - 5*Exp[16*x] - 10*Exp[15*x] - 10*Exp[10*x] + 20*Exp[9*x] + 40*Exp[8*x] + 65*Exp[7*x] - 30*Exp[6*x] - 96*Exp[5*x] - 45*Exp[4*x] + 20*Exp[3*x] + 50*Exp[2*x] + 24*Exp[x] - 24), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0], Vec(serlaplace((1/5!)*(exp(31*x) - 5*exp(16*x) - 10*exp(15*x) - 10*exp(10*x) + 20*exp(9*x) + 40*exp(8*x) + 65*exp(7*x) - 30*exp(6*x) - 96*exp(5*x) - 45*exp(4*x) + 20*exp(3*x) + 50*exp(2*x) + 24*exp(x) - 24)))) \\ G. C. Greubel, Oct 07 2017
KEYWORD
easy,nonn
AUTHOR
Goran Kilibarda and Vladeta Jovovic, Jan 08 2006
STATUS
approved