login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A095151 a(n+3) = 3*a(n+2) - 2*a(n+1) + 1 with a(0)=0, a(1)=2. 13
0, 2, 7, 18, 41, 88, 183, 374, 757, 1524, 3059, 6130, 12273, 24560, 49135, 98286, 196589, 393196, 786411, 1572842, 3145705, 6291432, 12582887, 25165798, 50331621, 100663268, 201326563, 402653154, 805306337, 1610612704, 3221225439 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A sequence generated from a Bell difference row matrix, companion to A095150.

A095150 uses the same recursion rule but the multiplier [1 1 1] instead of [1 0 0].

For n>0, (a(n)) is row 2 of the convolution array A213568. - Clark Kimberling, Jun 20 2012

For n>0, (a(n)) is row 2 of the convolution array A213568. - Clark Kimberling, Jun 20 2012

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-5,2).

FORMULA

Let M = a 3 X 3 matrix having Bell triangle difference terms (A095149 is composed of differences of the Bell triangle A011971): (fill in the 3 X 3 matrix with zeros): [1 0 0 / 1 1 0 / 2 1 2] = M. Then M^n * [1 0 0] = [1 n a(n)].

a(n) = 3*2^n -(n+3) = 2*a(n-1) + n +1 = A000295(n+2) - A000079(n). For n>0, a(n) = A077802(n). - Henry Bottomley, Oct 25 2004

From Colin Barker, Apr 23 2012: (Start)

a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).

G.f.: x*(2-x)/((1-x)^2*(1-2*x)). (End)

a(n) = A125128(n) + A000225(n). - Miquel Cerda, Aug 07 2016

a(n) = 2*A125128(n) - A000325(n) + 1. - Miquel Cerda, Aug 12 2016

a(n) = A125128(n) + A000325(n) + n - 1. - Miquel Cerda, Aug 27 2016

E.g.f.: 3*exp(2*x) - (3+x)*exp(x). - G. C. Greubel, Jul 26 2019

Let Prod_{i=0..n-1} (1+x^{2^i}+x^{2*2^i}) =

Sum_{j=0..d} b_j x^j, where d=2^{n+1}-2. Then

a(n)=Sum_{j=0..d-1} b_j/b_{j+1} (proved). - R. P. Stanley, Aug 27 2019

EXAMPLE

a(6) = 183 = 3*88 -2*41 + 1.

a(4) = 41 since M^4 * [1 0 0] = [1 4 41].

MAPLE

a[0]:=0:a[1]:=0:for n from 2 to 50 do a[n]:=2*a[n-1]+n od: seq(a[n], n=1..31); # Zerinvary Lajos, Feb 22 2008

MATHEMATICA

a[n_] := (MatrixPower[{{1, 0, 0}, {1, 1, 0}, {2, 1, 2}}, n].{{1}, {0}, {0}})[[3, 1]]; Table[ a[n], {n, 30}] (* Robert G. Wilson v, Jun 05 2004 *)

Table[3*2^n -(n+3), {n, 0, 30}] (* G. C. Greubel, Jul 26 2019 *)

PROG

(PARI) vector(30, n, n--; 3*2^n -(n+3)) \\ G. C. Greubel, Jul 26 2019

(MAGMA) [3*2^n -(n+3): n in [0..30]]; // G. C. Greubel, Jul 26 2019

(Sage) [3*2^n -(n+3) for n in (0..30)] # G. C. Greubel, Jul 26 2019

(GAP) List([0..30], n-> 3*2^n -(n+3)); # G. C. Greubel, Jul 26 2019

CROSSREFS

Cf. A000110, A011971, A095149, A095150.

Sequence in context: A192955 A055503 A077802 * A147611 A007991 A037294

Adjacent sequences:  A095148 A095149 A095150 * A095152 A095153 A095154

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson, May 30 2004

EXTENSIONS

Edited by Robert G. Wilson v, Jun 05 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 3 20:29 EDT 2020. Contains 333199 sequences. (Running on oeis4.)