|
|
A095152
|
|
Number of 3-block covers of a labeled n-set.
|
|
1
|
|
|
1, 32, 321, 2560, 18881, 135072, 954241, 6705920, 47020161, 329377312, 2306349761, 16146574080, 113032395841, 791245902752, 5538778714881, 38771623191040, 271401878897921, 1899814701967392, 13298707562817601, 93090966886860800, 651636810049438401
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (1/3!)*(11-6*3^n+7^n).
a(n) = 11*a(n-1)-31*a(n-2)+21*a(n-3). G.f.: -x^2*(21*x+1) / ((x-1)*(3*x-1)*(7*x-1)). - Colin Barker, Jul 12 2013
a(n) = sum(i=0..n, (-1)^i * C(n,i) * C(2^(n-i)-1,3) ). - Geoffrey Critzer, Aug 24 2014
|
|
MAPLE
|
|
|
MATHEMATICA
|
nn = 19; Table[Sum[(-1)^i Binomial[n, i] Binomial[2^(n - i) - 1, 3], {i, 0, n}], {n, 2, nn}] (* Geoffrey Critzer, Aug 24 2014 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|