OFFSET
0,5
COMMENTS
a(n) is the number of binary Lyndon words of length n+3 having 3 blocks of 0's, see Math.SE. - Andrey Zabolotskiy, Nov 16 2021
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160.
Pieter Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO].
Felix Pahl, Find the number of n-length Lyndon words on alphabet {0,1} with k blocks of 0's. (answer), Mathematics StackExchange, 2020.
Index entries for linear recurrences with constant coefficients, signature (4,-6,6,-9,12,-9,6,-6,4,-1).
FORMULA
G.f.: x^4*(2-x+2*x^2)/((1-x)^6*(1+x+x^2)^2).
a(n) = (1/27)*((3*A049347(n) + A049347(n-1)) - 3*(-1)^n*(A099254(n) - A099254(n- 1)) + n*(3*n^4 - 15*n^2 - 28)/40). - G. C. Greubel, Oct 24 2022
MATHEMATICA
CoefficientList[Series[x^4(2 -x+ 2*x^2)/((1-x)^6*(1 +x +x^2)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 13 2012 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); [0, 0, 0, 0] cat Coefficients(R!( x^4*(2-x+2*x^2)/((1-x)^6*(1+x+x^2)^2) )); // G. C. Greubel, Oct 24 2022
(SageMath)
def A147611_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^4*(2-x+2*x^2)/((1-x)^6*(1+x+x^2)^2) ).list()
A147611_list(50) # G. C. Greubel, Oct 24 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Nov 08 2008
STATUS
approved