login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340426
Triangle read by rows: T(n,k) = A000203(n-k+1)*A002865(k-1), 1 <= k <= n.
7
1, 3, 0, 4, 0, 1, 7, 0, 3, 1, 6, 0, 4, 3, 2, 12, 0, 7, 4, 6, 2, 8, 0, 6, 7, 8, 6, 4, 15, 0, 12, 6, 14, 8, 12, 4, 13, 0, 8, 12, 12, 14, 16, 12, 7, 18, 0, 15, 8, 24, 12, 28, 16, 21, 8, 12, 0, 13, 15, 16, 24, 14, 28, 28, 24, 12, 28, 0, 18, 13, 30, 16, 48, 24, 49, 32, 36, 14, 14, 0, 12
OFFSET
1,2
COMMENTS
Conjecture: the sum of row n equals A138879(n), the sum of all parts in the last section of the set of partitions of n.
EXAMPLE
Triangle begins:
1;
3, 0;
4, 0, 1;
7, 0, 3, 1;
6, 0, 4, 3, 2;
12, 0, 7, 4, 6, 2;
8, 0, 6, 7, 8, 6, 4;
15, 0, 12, 6, 14, 8, 12, 4;
13, 0, 8, 12, 12, 14, 16, 12, 7;
18, 0, 15, 8, 24, 12, 28, 16, 21, 8;
12, 0, 13, 15, 16, 24, 14, 28, 28, 24, 12;
28, 0, 18, 13, 30, 16, 48, 24, 49, 32, 36, 14;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k A002865 T(6,k)
--------------------------
1 1 * 12 = 12
2 0 * 6 = 0
3 1 * 7 = 7
4 1 * 4 = 4
5 2 * 3 = 6
6 2 * 1 = 2
--------------------------
The sum of row 6 is 12 + 0 + 7 + 4 + 6 + 2 = 31, equaling A138879(6) = 31.
CROSSREFS
Columns 1, 3 and 4 give A000203.
Column 2 gives A000004.
Columns 5 and 6 gives A074400.
Column 7 and 8 give A239050.
Column 9 gives A319527.
Column 10 gives A319528.
Leading diagonal gives A002865.
Sequence in context: A136667 A004588 A272474 * A308717 A359866 A297217
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Jan 07 2021
STATUS
approved